Роль еритроцитів у формуванні запалення та тромбозу і в дії антитромботичних засобів
PDF (Русский)

Ключові слова

запалення
тромбоз
антитромботичні засоби
еритроцити

Як цитувати

Рамазанов, В., Воловельська, Є., Ніпот, О., Єршов, С., Єршова, Н., Руденко, С., СеменченкоO., & Бондаренко, В. (2020). Роль еритроцитів у формуванні запалення та тромбозу і в дії антитромботичних засобів. Експериментальна і клінічна медицина, 78(1), 67-73. вилучено із https://ecm.knmu.edu.ua/article/view/371

Анотація

Виявлення механізмів взаємодії систем запалення і коагуляції, а також ступеня їх участі у патогенезі різних захворювань є ключем для розробки ефективних терапевтичних протоколів. Останніми роками зросла кількість досліджень, що пов’язані із взаємодією еритроцитів з клітинами крові і судин в умовах, що моделюють запалення і тромбоз. Даний напрямок досліджень дозволив розкрити деякі механізми клітинних взаємодій, які вказують на можливість ефективної терапевтичної корекції запальних і тромботичних розладів.
PDF (Русский)

Посилання

Foley J.H., Conway E.M. (2016). Cross talk pathways between coagulation and inflammation. Circ Res. 118, 9: 1392–1408. DOI: b10.1161/CIRCRESAHA.

306853.

González-Reimers E., Quintero-Platt G., Martín-González C., Pérez-Hernández O., Romero-Acevedo L., Santolaria-Fernández F. et al. (2016). Thrombin activation and liver inflammation in advanced hepatitis C virus infection. World J Gastroenterol. 22, 18: 4427–4437. DOI: 10.3748/wjg.v22.i18.4427.

Grandl G., Wolfrum C. (2018). Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol. 40, 2: 215–224. DOI: 10.1007/s00281-017-0666-5.

Lang I.M., Dorfmüller P., Vonk Noordegraaf A. (2016). The Pathobiology of Chronic Thromboembolic Pulmonary Hypertension. Ann. Am. Thorac Soc. 13, 3: S215–221. DOI: 10.1513/AnnalsATS.201509-620AS.

Sparkenbaugh E., Pawlinski R. (2013). Interplay between coagulation and vascular inflammation in sickle cell disease. Br J Haematol. 162, 1: 3–14. DOI: 10.1111/bjh.12336.

Weber S.M., Rikkers L.F. (2003). Splenic vein thrombosis and gastrointestinal bleeding in chronic pancreatitis. World J. Surg. 27, 11: 1271–1274.

Zacharowski K. (2007). New reflections on inflammation and coagulation. Anaesthesist. 56, 5: 482–484.

Zaldivia M.T.K., McFadyen J.D., Lim B., Wang X., Peter K. (2017). Platelet-Derived Microvesicles in Cardiovascular Diseases. Front Cardiovasc Med. 4: 74. DOI: 10.3389/fcvm.2017.00074. eCollection 2017.

Gando S. (2010). Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med. 38, 2. S35–42. DOI:10.1097/CCM.0b013e.

Gyawali P., Richards R.S. (2015). Association of altered hemorheology with oxidative stress and inflammation in metabolic syndrome. Redox Rep. 20, 3: 139–144. DOI: 10.1179/1351000214Y.0000000120.

Pretorius E. (2013). The adaptability of red blood cells. Cardiovasc Diabetol. 12, 1: 63. DOI: 10.1186/1475-2840-12-63.

Kuhn V., Diederich L., Keller T.C., Kramer C.M., Lückstädt W., Panknin C. et al. (2017). Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal. 26, 13: 718–742. DOI: 10.1089/ars.2016.6954.

Bester J., Pretorius E. (2016). Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep. 26, 6: 32188. DOI: 10.1038/srep32188.

Bogner V., Keil L., Kanz K.G. Kirchhoff C., Leidel B.A., Mutschler W. et al. (2009). Very early posttraumatic serum alterations are significantly associated to initial massive RBC substitution, injury severity, multiple organ failure and adverse clinical outcome in multiple injured patients. Eur. J. Med. Res. 14, 7: 284–291.

Hod E.A., Zhang N., Sokol S.A., Wojczyk B.S., Francis R.O., Ansaldi D. et al. (2010). Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood. 115, 21: 4284–4292. DOI: 10.1182/blood-2009-10-245001.

Liese A.M., Siddiqi M.Q., Siegel J.H., Denny T, Spolarics Z. et al. (2001). Augmented TNF-alpha and IL-10 production by primed human monocytes following interaction with oxidatively modified autologous erythrocytes. J. Leukoc Biol. 70, 2: 289–296.

Østerud B., Unruh D., Olsen J.O. Kirchhofer D., Owens A.P. 3rd, Bogdanov V.Y. (2015). Procoagulant and proinflammatory effects of red blood cells on lipopolysaccharide-stimulated monocytes. J. Thromb Haemost. 13, 9: 1676–1682. DOI: 10.1111/jth.13041.

Mittag D., Sran A., Chan K.S., Boland M.P., Bandala-Sanchez E., Huet O. et al. (2015). Stored red blood cell susceptibility to in vitro transfusion-associated stress conditions is higher after longer storage and increased by storage in saline-adenine-glucose-mannitol compared to AS-1. Transfusion. 55, 9: 2197–2206. DOI: 10.1111/trf.13138.

Grimshaw K., Sahler J., Spinelli S.L. Phipps R.P., Blumberg N. et al. (2011). New frontiers in transfusion biology: identification and significance of mediators of morbidity and mortality in stored red blood cells. Transfusion. 51, 4: 874–880. DOI: 10.1111/j.1537-2995.2011.03095.x.

Setty B.N., Betal S.G. (2008). Microvascular endothelial cells express a phosphatidylserine receptor: a functionally active receptor for phosphatidylserine-positive erythrocytes. Blood. 111, 2: 905–914.

Anniss A.M., Sparrow R.L. (2006). Storage duration and white blood cell content of red blood cell products increases adhesion of stored RBCs to endothelium under flow conditions. Transfusion. 46, 9. 1561–1567.

Sparrow R.L., Sran A., Healey G., Veale M.F., Norris P.J. (2014). In vitro measures of membrane changes reveal differences between red blood cells stored in saline-adenine-glucose-mannitol and AS-1 additive solutions: a paired study. Transfusion. 54, 3: 560–568. DOI: 10.1111/trf.12344.

Anniss A.M., Sparrow R.L. (2007). Variable adhesion of different red blood cell products to activated vascular endothelium under flow conditions. Am. J. Hematol. 82, 6: 439–445.

Shiu Y.T., McIntire L.V. (2003). In vitro studies of erythrocyte-vascular endothelium interactions. Ann. Biomed. Eng. 31, 11: 1299–1313.

García-Roa M., Del Carmen Vicente-Ayuso M., Bobes A.M., Pedraza A.C., González-Fernández A., Martín M.P. et al. (2017). Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus. 15, 3: 222–231. DOI: 10.2450/2017.0345-16.

Remy K.E., Hall M.W., Cholette J., Juffermans N.P., Nicol K., Doctor A. et al. (2018). Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion. 30, 1. 1–12. DOI: 10.1111/trf.14488.

Sparrow R.L. (2015). Red blood cell storage duration and trauma. Transfus Med Rev. 29, 2: 120–126. DOI: 10.1016/j.tmrv.2014.09.007.

Valeri C.R., Ragno G. (2010). A approach to prevent the severe adverse events associated with transfusion of FDA-approved blood products. Transfus Apher Sci. 42, 3: 223–233. DOI: 10.1016/j.transci.2009.08.001.

Wendelbo Ø., Hervig T., Haugen O. Seghatchian J., Reikvam H. (2017). Microcirculation and red cell transfusion in patients with sepsis. Transfus Apher Sci. 56, 6. 900–905. DOI: 10.1016/j.transci.2017.11.020.

Antonelou M.H., Kriebardis A.G., Papassideri I.S. (2010). Aging and death signalling in mature red cells: from basic science to transfusion practice. Blood Transfus. 8, 3: 39–47. DOI: 10.2450/2010.007S.

Fischer D., Büssow J., Meybohm P., Weber C.F., Zacharowski K., Urbschat A. et al. (2017). Microparticles from stored red blood cells enhance procoagulant and proinflammatory activity. Transfusion. 57, 11: 2701–2711. DOI: 10.1111/trf.14268.

Gao C., Xie R., Yu C., Wang Q., Shi F., Yao C. et al. (2012). Procoagulant activity of erythrocytes and platelets through hosphatidylserine exposure and microparticles release in patients with nephrotic syndrome. Thromb Haemost. 107, 4: 681–689. DOI: 10.1160/TH11-09-0673.

Balaji S.N., Trivedi V. (2012). Extracellular Methemoglobin Mediated Early ROS Spike Triggers Osmotic Fragility and RBC Destruction: An Insight into the Enhanced Hemolysis During Malaria. Indian J Clin Biochem. 27, 2: 178–185. DOI: 10.1007/s12291-011-0176-5.

Janz D.R., Ware L.B. (2015). The role of red blood cells and cell-free hemoglobin in the pathogenesis of ARDS. J. Intensive Care. 3: 20. DOI: 10.1186/s40560-015-0086-3. eCollection 2015.

Kato G.J., Steinberg M.H., Gladwin M.T. (2017). Intravascular hemolysis and the pathophysiology of sickle cell disease. J. Clin. Invest. 127, 3: 750–760. DOI: 10.1172/JCI89741.

Parker C.J. (2012). Paroxysmal nocturnal hemoglobinuria. Curr. Opin. Hematol. – 19, 3: 141–148. DOI: 10.1097/MOH.0b013e328351c348.

Rother R.P., Bell L., Hillmen P., Gladwin M.T. (2005). The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 293, 13: 1653–1662.

Vinchi F., Tolosano E. (2013). Therapeutic approaches to limit hemolysis-driven endothelial dysfunction: scavenging free heme to preserve vasculature homeostasis. Oxid Med Cell Longev. 2013: 396527. DOI: 10.1155/2013/396527

Jacobi K.E., Wanke C., Jacobi A., Weisbach V., Hemmerling T.M. et al. (2000). Determination of eicosanoid and cytokine production in salvaged blood, stored red blood cell concentrates, and whole blood. J. Clin. Anesth. 12, 2: 94–99.

Bamias G., Cominelli F. (2016). Cytokines and intestinal inflammation. Curr. Opin. Gastroenterol. 32, 6: 437–442.

Suryavanshi S.V., Kulkarni Y.A. (2017). NF-κβ: A Potential Target in the Management of Vascular Complications of Diabetes. Front Pharmacol. 8: 798. DOI: 10.3389/fphar.2017.00798. eCollection 2017.

Long K., Woodward J., Procter L., Ward M., Meier C. et al. (2014). In vitro transfusion of red blood cells results in decreased cytokine production by human T cells. J. Trauma Acute Care Surg. 77, 2: 198–201. DOI: 10.1097/TA.0000000000000330.

Muravyov A.V., Tikhomirova I.A., Maimistova A.A., Bulaeva S.V., Mikhailov P.V.e t al. (2011). Red blood cell aggregation changes are depended on its initial value: Effect of long-term drug treatment and short-term cell incubation with drug. Clin. Hemorheol. Microcirc. 48, 4: 231–240. DOI: 10.3233/CH-2011-1415.

Słoczyńska K., Kózka M., Pękala E., Marchewka A., Marona H. et al. (2013). In vitro effect of pentoxifylline and lisofylline on deformability and aggregation of red blood cells from healthy subjects and patients with chronic venous disease. Acta Biochim Pol. 60, 1: 129–135.

Cummings D.M., Ballas S.K., Ellison M.J. (1992). Lack of effect of pentoxifylline on red blood cell deformability. J. Clin. Pharmacol. 32, 11: 1050–1053.

De la Cruz J.P., Romero M.M., Sanchez P. (1993). Antiplatelet effect of pentoxifylline in human whole blood. Gen. Pharmacol. 24, 3: 605–609.

Fuentes E., Pereira J., Mezzano D., Alarcón M., Caballero J., Palomo I. et al. (2014). Inhibition of platelet activation and hrombus formation by adenosine and inosine: studies on their relative contribution and molecular modeling. PLoS One. 9, 11. e112741. doi: 10.1371/journal.pone.0112741.

Wiernsperger N., Rapin J.R. (2012). Microvascular diseases: is a new era coming? Cardiovasc Hematol Agents Med Chem. 10, 2: 167–183.

Kim H.H., Liao J.K. (2008). Translational therapeutics of dipyridamole // Arterioscler. Thromb Vasc Biol. 28, 3: 39–42. doi: 10.1161/ATVBAHA.107. 160226.

McCarty M.F., O'Keefe J.H., DiNicolantonio J.J. (2016). Pentoxifylline for vascular health: a brief review of the literature. Open Heart. 3, 1: 1–5. doi:10.1136/openhrt-2015-000365.

Du G., Lin Q., Wang J. (2016). A brief review on the mechanisms of aspirin resistance. Int. J. Cardiol. 220: 21–26. doi:0.1016/j.ijcard.2016.06.104.

Zhou G., Marathe G.K., Willard B., McIntyre T.M. (2011). Intracellular erythrocyte platelet-activating factor acetylhydrolase I inactivates aspirin in blood. J. Biol Chem. 286 (40): 34820–34829. doi: 10.1074/jbc.M111.267161.

Bozzo J., Hernández M.R., Del Giorgio A. (1996). Red blood cell aggregability is increased by aspirin and flow stress, whereas dipyridamole induces cell shape alterations: measurements by digital image analysis. Eur. J. Clin. Invest. 26, 9: 747–754.

Bozzo J., Hernández M.R., Galán A.M., Heras M., Ordinas A., Escolar G. (1999). Impaired antiplatelet effects of aspirin associated with hypoxia and ATP release from erythrocytes. Studies in a system with flowing human blood. Eur. J. Clin. Invest. 29, 5: 438–444.

Bozzo J., Hernández M.R., Ordinas A. (1996). Erythrocytes modulate the anti-aggregation effect of aspirin and dipyridamole. Study under static conditions and in a flow system. Sangre (Barc). 41, 1: 13–18.

Bozzo J., Hernández M.R., Alemany M., Rossel G., Bastida E. Escolar G. et al. (1993). Potentiation of the antiplatelet effect of dipyridamole and aspirin by erythrocytes. Study under flow conditions. Sangre (Barc). 38, 4: 273–277.

Durak I., Karaayvaz M., Cimen M.Y., Avci A., Cimen O.B., Büyükkoçak S. et al. (2001). Aspirin impairs antioxidant system and causes peroxidation in human erythrocytes and guinea pig myocardial tissue. Hum. Exp. Toxicol. 20, 1: 34–37.

Ruggiero A.C., Nepomuceno M.F., Jacob R.F., Dorta D.J., Tabak M. et al. (2000). Antioxidant effect of dipyridamole (DIP) and its derivative RA 25 upon lipid peroxidation and hemolysis in red blood cells. Physiol. Chem. Phys. Med. NMR. 32, 1: 35–48.