Abstract
The design of efficient medicinal agents (MAs) is the main direction in pharmaceutical science and industry, which will solve the tasks still remaining unsolved with the current standard therapies. At the same time, the approach to design the novel therapeutic protocols has not been exhausted yet, actually remaining a major one in therapy of vascular diseases. The reported data on studying the purinergic signaling in blood cells and vessels under different diseases suggest a disorder in erythrocyte physiology to aggravate the vascular pathogenesis, therefore these cells are potential target cells under MAs effect. This fact may determine a novel therapeutic strategy to prevent and treat vascular pathology.References
Erythrocytes: oxygen sensors and modulators of vascular tone / M.E. Ellsworth, C.G. Ellis, D. Goldman et al. // Physiology (Bethesda). – 2009. – Vol. 24. – P. 107–116. doi:10.1152/physiol.00038.2008
Ellsworth M.L. Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle / M.E. Ellsworth, C.G. Ellis, R.S. Sprague // Acta Physiol (Oxf). – 2016. – Vol. 216, № 3. – P. 265–276. doi:10.1111/apha.12596
ADP Acting on P2Y13 Receptors Is a Negative Feedback Pathway for ATP Release From Human Red Blood Cells / L. Wang, G. Olivecrona, M. Götberg et al. // Circulation Research. – 2005. – Vol. 96. – P. 189–196. doi://doi.org/10.1161/01.RES.0000153670.07559.E4
Burnstock G. Blood cells: an historical account of the roles of purinergic signaling / G. Burnstock // Purinergic Signal. – 2015. – Vol. 11, № 4. – P. 411–434. doi:10.1007/s11302-015-9462-7
Subasinghe W. Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes / W. Subasinghe, D.M. Spence // Anal. Chim. Acta. – 2008. – Vol. 618. – P. 227–233. doi:10.1016/j.aca.2008.04.061.
Alterations of adenine nucleotide metabolism and function of blood platelets in patients with diabetes / A. Michno, H. Bielarczyk, T. Pawełczyk et al. // Diabetes. – 2007. – Vol. 56, № 2. – P. 462–467.
Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension / R.S. Sprague, A.H. Stephenson, M.E. Ellsworth et al. // Exp. Biol. Med (Maywood) – 2001. – Vol. 226. – P. 434–439.
Radosinska J. The role of red blood cell deformability and Na, K-ATPase function in selected risk factors of cardiovascular diseases in humans: focus оn hypertension, diabetes mellitus and hypercholesterolemia / J. Radosinska, N. Vrbjar // Physiol. Res. – 2016. – Vol. 65, № 1. – P. S43–S54.
Reduced expression of G(i) in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release / R.S. Sprague, A.H. Stephenson, E.A. Bowles et al. // Diabetes. – 2006. – Vol. 55, № 12. – P. 3588–3593.
A selective phosphodiesterase 3 inhibitor rescues low pO2-induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control / R.S. Sprague, E.A. Bowles, D. Achilleus et al. // Am. J. Physiol. Heart. Circ. Physiol. – 2011. – Vol. 301. – P. H2466–H2472. doi:10.1152/ajpheart. 00729.2011.
Synergistic effects of prostacyclin analogs and phosphodiesterase inhibitors on cyclic adenosine 3',5' monophosphate accumulation and adenosine 3'5' triphosphate release from human erythrocytes / S.M. Knebel, M.M. Elrick, E.A. Bowles et al. // Exp. Biol. Med (Maywood). – 2013. – Vol. 238. – P. 1069–1074. doi: 10.1177/1535370213498981
Sprague R.S. Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication / R.S. Sprague, M.L. Ellsworth // Microcirculation. – 2012 – Vol. 19, № 5. – P. 430–439. doi:10.1111/j.1549-8719.2011.00158.x.
Metabolic coronary flow regulation-current concepts / A. Deussen, M. Brand, A. Pexa et al. // Basic Res. Cardiol. – 2006. – Vol. 101, № 6. – P. 453–464.
Baxter G.F. Role of adenosine in delayed preconditioning of myocardium / G.F. Baxter // Cardiovasc. Res. – 2002. – Vol. 55, № 3. – Р. 483–494.
Gopalakrishnan M. Is red blood cell a mediator of remote ischaemic preconditioning? / M. Gopalakrishnan, S. Saurabh // Med. Hypotheses. – 2014. – Vol. 83, № 6. – P. 816–818. doi:10.1016/j.mehy
Kim H.H. Translational therapeutics of dipyridamole / H.H. Kim, J.K. Liao // Arterioscler. Thromb. Vasc. Biol. – 2008. – Vol. 28, № 3. – P. s39–42. doi:10.1161/ATVBAHA.107.160226.
McCarty M.F. Pentoxifylline for vascular health: a brief review of the literature / M.F. McCarty, J.H. O'Keefe, J.J. DiNicolantonio // Open Heart. – 2016. – Vol. 3, № 1. – P. 1–5. doi:10.1136/openhrt-2015-000365
Shrör K. The pharmacology of cilostazol / K. Shrör // Diabetes Obes Metab. – 2002. – № 4. – P. 14–19.
Chen J.F. Adenosine receptors as drug targets--what are the challenges? / J.F. Chen, H.K. Eltzschig, B.B. Fredholm // Nat. Rev. Drug. Discov. – 2013. – Vol. 12, № 4. – P. 265–286. doi:10.1038/nrd3955
Linden J. Regulation of leukocyte function by adenosine receptors / J. Linden // Adv. Pharmacol. – 2011. – Vol. 61. – P. 95–114. doi:10.1016/B978-0-12-385526-8.00004-7
Mustafa S.J. Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology / S.J. Mustafa, R.R. Morrison, B. Teng // Handb. Exp. Pharmacol. – 2009. – Vol. 193. – P. 161–188. doi:10.1007/978-3-540-89615-9_6
Noji T. KF24345, an adenosine uptake inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor-α production and leukopenia via endogenous adenosine in mice / T. Noji, M. Takayama, M. Mizutani // J. Pharmacol. Exp. Ther. – 2002. – Vol. 300. – P. 200–205.
Riksen N.P. Oral therapy with dipyridamole limits ischemia-reperfusion injury in humans / N.P. Riksen, W.J. Oyen, B.P. Ramakers et al. // Clinical Pharmacology & Therapeutics. – 2005. – Vol. 78. – P. 52–59.
Detrimental effects of adenosine signaling in sickle cell disease / Y. Zhang, Y. Dai, J. Wen et al. // Nat. Med. – 2011. – Vol. 17, № 1. – P. 79–86. doi:10.1038/nm.2280
Jackson E.K. Possible role of adenosine deaminase in vaso-occlusive diseases / E.K. Jackson, M. Koehler, Z. Mi // J. Hypertens. – 1996. – Vol. 14, № 1. – P. 19–29.
Wallace K.L. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease / K.L. Wallace, J. Linden // Blood. – 2010. – Vol. 116, № 23. – P. 5010–5020.
Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson / J.J. Field, G. Lin, M.M. Okam et al. // Blood. – 2013. – Vol. 121, № 17. – P. 3329–3334.
Idzko M. Extracellular nucleotide and nucleoside signaling in vascular and blood disease / M. Idzko, D. Ferrari, A.K. Riege et al. // Blood. – 2014. – Vol. 124. – P. 1029–1037. doi: //doi.org/10.1182/blood-2013-09-402560
Laine M. P2Y12-ADP receptor antagonists: Days of future and past / M. Laine, F. Paganelli, L. Bonello // World J. Cardiol. – 2016. – Vol. 8, № 5. – P. 327–332. doi:10.4330/wjc.v8.i5.327
Switching of platelet P2Y12 receptor inhibitors in patients with acute coronary syndromes undergoing percutaneous coronary intervention: Rev of the literature and practical considerations / L. De Luca, P. Capranzano, G. Patti et al. // Am. Heart J. – 2016. – Vol. 176. – P. 44–52. doi:10.1016/j.ahj.2016.03.006
Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model / J.J. Giezen, J. Sidaway, P. Glaves et al. // J. Cardiovasc. Pharmacol. Ther. – 2012. – Vol. 17. – P. 164–172. doi: 10.1177/1074248411410883
Ticagrelor induces adenosine triphosphate release from human red blood cells / J. Ohman, R. Kudira, S. Albinsson et al. // Biochem. Biophys. Res. Commun. – 2012. – Vol. 418, № 4. – P. 754–758. doi:10.1016/j.bbrc.2012.01.093
Ticagrelor improves peripheral arterial function in patients with a previous acute coronary syndrome / K. Torngren, J. Ohman, H. Salmi et al. // Cardiology. – 2013. – Vol. 124. – P. 252–258. doi:10.1159/000347122
Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction / Y. Ye, G.D. Birnbaum, J.R. Perez-Polo et al. // Arterioscler Thromb Vasc Biol. – 2015. – Vol. 35. – P. 1805–1814.
Mechanisms of hemolysis-associated platelet activation / C.C. Helms, M. Marve, W. Zhao et al. // J. Thromb. Haemost. – 2013. – Vol. 11, № 12. – P. 2148–2154. doi:10.1111/jth.12422
A double-blind, randomized, multicenter phase 2 study of prasugrel versus placebo in adult patients with sickle cell disease / T. Wun, D. Soulieres, A.L. Frelinger et al. // J. Hematol. Oncol. – 2013. – Vol. 6, № 17. – P. 1–10.
Underlying mechanism and specific prevention of hemolysis-induced platelet activation / T. Gremmel, S. Fedrizzi, G. Weigel et al. // Platelets. – 2016. – Vol. 16. –
P. 1–5.