Роль еритроцитів у генерації пуринергічних агоністів і дії лікарських засобів
PDF (Русский)

Ключові слова

еритроцити
тромбоцити
вазодилататори
антитромботичні засоби

Як цитувати

Рамазанов, В., Воловельська, Є., Єршов, С., Єршова, Н., Шапкіна, О., Руденко, С., & Бондаренко, В. (2020). Роль еритроцитів у генерації пуринергічних агоністів і дії лікарських засобів. Експериментальна і клінічна медицина, 74(1), 35-40. вилучено із https://ecm.knmu.edu.ua/article/view/548

Анотація

Створення ефективних лікарських засобів є основним напрямком фармацевтичної науки і промисловості, що дозволить вирішити завдання, не розв’язані традиційними терапевтичними методами, що існують. У той же час, продовжують розроблятися нові терапевтичні протоколи, котрі залишаються важливими при лікуванні судинних захворювань. Дані літератури з дослідження пуринергічної сигналізації в клітинах крові і судин при різних захворюваннях свідчать про те, що порушення фізіології еритроцитів погіршує патогенез судин, тому ці клітини є потенційними клітинами-мішенями при впливі. Ця обставина може визначити нову терапевтичну стратегію для профілактики і лікування судинної патології.
PDF (Русский)

Посилання

Erythrocytes: oxygen sensors and modulators of vascular tone / M.E. Ellsworth, C.G. Ellis, D. Goldman et al. // Physiology (Bethesda). – 2009. – Vol. 24. – P. 107–116. doi:10.1152/physiol.00038.2008

Ellsworth M.L. Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle / M.E. Ellsworth, C.G. Ellis, R.S. Sprague // Acta Physiol (Oxf). – 2016. – Vol. 216, № 3. – P. 265–276. doi:10.1111/apha.12596

ADP Acting on P2Y13 Receptors Is a Negative Feedback Pathway for ATP Release From Human Red Blood Cells / L. Wang, G. Olivecrona, M. Götberg et al. // Circulation Research. – 2005. – Vol. 96. – P. 189–196. doi://doi.org/10.1161/01.RES.0000153670.07559.E4

Burnstock G. Blood cells: an historical account of the roles of purinergic signaling / G. Burnstock // Purinergic Signal. – 2015. – Vol. 11, № 4. – P. 411–434. doi:10.1007/s11302-015-9462-7

Subasinghe W. Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes / W. Subasinghe, D.M. Spence // Anal. Chim. Acta. – 2008. – Vol. 618. – P. 227–233. doi:10.1016/j.aca.2008.04.061.

Alterations of adenine nucleotide metabolism and function of blood platelets in patients with diabetes / A. Michno, H. Bielarczyk, T. Pawełczyk et al. // Diabetes. – 2007. – Vol. 56, № 2. – P. 462–467.

Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension / R.S. Sprague, A.H. Stephenson, M.E. Ellsworth et al. // Exp. Biol. Med (Maywood) – 2001. – Vol. 226. – P. 434–439.

Radosinska J. The role of red blood cell deformability and Na, K-ATPase function in selected risk factors of cardiovascular diseases in humans: focus оn hypertension, diabetes mellitus and hypercholesterolemia / J. Radosinska, N. Vrbjar // Physiol. Res. – 2016. – Vol. 65, № 1. – P. S43–S54.

Reduced expression of G(i) in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release / R.S. Sprague, A.H. Stephenson, E.A. Bowles et al. // Diabetes. – 2006. – Vol. 55, № 12. – P. 3588–3593.

A selective phosphodiesterase 3 inhibitor rescues low pO2-induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control / R.S. Sprague, E.A. Bowles, D. Achilleus et al. // Am. J. Physiol. Heart. Circ. Physiol. – 2011. – Vol. 301. – P. H2466–H2472. doi:10.1152/ajpheart. 00729.2011.

Synergistic effects of prostacyclin analogs and phosphodiesterase inhibitors on cyclic adenosine 3',5' monophosphate accumulation and adenosine 3'5' triphosphate release from human erythrocytes / S.M. Knebel, M.M. Elrick, E.A. Bowles et al. // Exp. Biol. Med (Maywood). – 2013. – Vol. 238. – P. 1069–1074. doi: 10.1177/1535370213498981

Sprague R.S. Erythrocyte-derived ATP and perfusion distribution: role of intracellular and intercellular communication / R.S. Sprague, M.L. Ellsworth // Microcirculation. – 2012 – Vol. 19, № 5. – P. 430–439. doi:10.1111/j.1549-8719.2011.00158.x.

Metabolic coronary flow regulation-current concepts / A. Deussen, M. Brand, A. Pexa et al. // Basic Res. Cardiol. – 2006. – Vol. 101, № 6. – P. 453–464.

Baxter G.F. Role of adenosine in delayed preconditioning of myocardium / G.F. Baxter // Cardiovasc. Res. – 2002. – Vol. 55, № 3. – Р. 483–494.

Gopalakrishnan M. Is red blood cell a mediator of remote ischaemic preconditioning? / M. Gopalakrishnan, S. Saurabh // Med. Hypotheses. – 2014. – Vol. 83, № 6. – P. 816–818. doi:10.1016/j.mehy

Kim H.H. Translational therapeutics of dipyridamole / H.H. Kim, J.K. Liao // Arterioscler. Thromb. Vasc. Biol. – 2008. – Vol. 28, № 3. – P. s39–42. doi:10.1161/ATVBAHA.107.160226.

McCarty M.F. Pentoxifylline for vascular health: a brief review of the literature / M.F. McCarty, J.H. O'Keefe, J.J. DiNicolantonio // Open Heart. – 2016. – Vol. 3, № 1. – P. 1–5. doi:10.1136/openhrt-2015-000365

Shrör K. The pharmacology of cilostazol / K. Shrör // Diabetes Obes Metab. – 2002. – № 4. – P. 14–19.

Chen J.F. Adenosine receptors as drug targets--what are the challenges? / J.F. Chen, H.K. Eltzschig, B.B. Fredholm // Nat. Rev. Drug. Discov. – 2013. – Vol. 12, № 4. – P. 265–286. doi:10.1038/nrd3955

Linden J. Regulation of leukocyte function by adenosine receptors / J. Linden // Adv. Pharmacol. – 2011. – Vol. 61. – P. 95–114. doi:10.1016/B978-0-12-385526-8.00004-7

Mustafa S.J. Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology / S.J. Mustafa, R.R. Morrison, B. Teng // Handb. Exp. Pharmacol. – 2009. – Vol. 193. – P. 161–188. doi:10.1007/978-3-540-89615-9_6

Noji T. KF24345, an adenosine uptake inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor-α production and leukopenia via endogenous adenosine in mice / T. Noji, M. Takayama, M. Mizutani // J. Pharmacol. Exp. Ther. – 2002. – Vol. 300. – P. 200–205.

Riksen N.P. Oral therapy with dipyridamole limits ischemia-reperfusion injury in humans / N.P. Riksen, W.J. Oyen, B.P. Ramakers et al. // Clinical Pharmacology & Therapeutics. – 2005. – Vol. 78. – P. 52–59.

Detrimental effects of adenosine signaling in sickle cell disease / Y. Zhang, Y. Dai, J. Wen et al. // Nat. Med. – 2011. – Vol. 17, № 1. – P. 79–86. doi:10.1038/nm.2280

Jackson E.K. Possible role of adenosine deaminase in vaso-occlusive diseases / E.K. Jackson, M. Koehler, Z. Mi // J. Hypertens. – 1996. – Vol. 14, № 1. – P. 19–29.

Wallace K.L. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease / K.L. Wallace, J. Linden // Blood. – 2010. – Vol. 116, № 23. – P. 5010–5020.

Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson / J.J. Field, G. Lin, M.M. Okam et al. // Blood. – 2013. – Vol. 121, № 17. – P. 3329–3334.

Idzko M. Extracellular nucleotide and nucleoside signaling in vascular and blood disease / M. Idzko, D. Ferrari, A.K. Riege et al. // Blood. – 2014. – Vol. 124. – P. 1029–1037. doi: //doi.org/10.1182/blood-2013-09-402560

Laine M. P2Y12-ADP receptor antagonists: Days of future and past / M. Laine, F. Paganelli, L. Bonello // World J. Cardiol. – 2016. – Vol. 8, № 5. – P. 327–332. doi:10.4330/wjc.v8.i5.327

Switching of platelet P2Y12 receptor inhibitors in patients with acute coronary syndromes undergoing percutaneous coronary intervention: Rev of the literature and practical considerations / L. De Luca, P. Capranzano, G. Patti et al. // Am. Heart J. – 2016. – Vol. 176. – P. 44–52. doi:10.1016/j.ahj.2016.03.006

Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model / J.J. Giezen, J. Sidaway, P. Glaves et al. // J. Cardiovasc. Pharmacol. Ther. – 2012. – Vol. 17. – P. 164–172. doi: 10.1177/1074248411410883

Ticagrelor induces adenosine triphosphate release from human red blood cells / J. Ohman, R. Kudira, S. Albinsson et al. // Biochem. Biophys. Res. Commun. – 2012. – Vol. 418, № 4. – P. 754–758. doi:10.1016/j.bbrc.2012.01.093

Ticagrelor improves peripheral arterial function in patients with a previous acute coronary syndrome / K. Torngren, J. Ohman, H. Salmi et al. // Cardiology. – 2013. – Vol. 124. – P. 252–258. doi:10.1159/000347122

Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction / Y. Ye, G.D. Birnbaum, J.R. Perez-Polo et al. // Arterioscler Thromb Vasc Biol. – 2015. – Vol. 35. – P. 1805–1814.

Mechanisms of hemolysis-associated platelet activation / C.C. Helms, M. Marve, W. Zhao et al. // J. Thromb. Haemost. – 2013. – Vol. 11, № 12. – P. 2148–2154. doi:10.1111/jth.12422

A double-blind, randomized, multicenter phase 2 study of prasugrel versus placebo in adult patients with sickle cell disease / T. Wun, D. Soulieres, A.L. Frelinger et al. // J. Hematol. Oncol. – 2013. – Vol. 6, № 17. – P. 1–10.

Underlying mechanism and specific prevention of hemolysis-induced platelet activation / T. Gremmel, S. Fedrizzi, G. Weigel et al. // Platelets. – 2016. – Vol. 16. –

P. 1–5.