Імунорегуляторні механізми при пухлинному рості
PDF (Русский)

Ключові слова

трансформуючий ростовий фактор
регуляторні Т-лімфоцити
клітини-супресори мієлоїдного походження
протипухлинний імунітет

Як цитувати

Кузьменко, Є., Сорочан, П., Пономарьов, І., & Шевцов, В. (2020). Імунорегуляторні механізми при пухлинному рості. Експериментальна і клінічна медицина, 78(1), 31-40. вилучено із https://ecm.knmu.edu.ua/article/view/357

Анотація

Обговорюється проблема імунорегуляторних механізмів при пухлинному рості. Головна увага приділяється участі в ангіогенезі клітин супресорів різного походження: Т-регуляторних (Treg), клітин-супресорів мієлоїдного походження (MDSC). Розглянуті питання порушення регуляції імунозапальної відповіді, що призводять до різних патологічних станів, пов’язаних з ростом пухлин. Імовірно важливе значення при цьому має формування імунологічної толерантності, що запускається імунозапальним процессом, котрий не завершується. Висвітлено механізми, які пов’язують розвиток пухлин, толерантність і хронічну запальну реакцію, а також можливу регулюючу роль ряду лікарських речовин у цих процесах.
PDF (Русский)

Посилання

Gajewski T.F., Schreiber H., Fu Y.X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14 (10): 1014–1022.

Henson P.M., Bratton D.L. (2013). Antiinflammatory effects of apoptotic cells. J. Clin. Invest. 7 (123): 2773–2774.

Rohovskii V.S. (2015). Mekhanizmy immunnoi tolerantnosti pri opukholevykh zabolevaniiakh i v norme [Mechanisms of immune tolerance in tumorous diseases and norma]. Ros. immunolog. zhurnal – Ros. immunolog. journal. 18 (9): 171–185.

Oft M. (2014). IL-10: master switch from tumor-promoting inflammation to antitumor immunity. Cancer Immunol. Res. 3 (2): 194–199.

Bailey S.R., Nelson M.H., Himes R.A., Li Z., Mehrotra S., Paulos C.M. (2014). Th17 cells in cancer: the ultimate identity crisis. Front. Immunol. 5: 276.

Luo C.Y., Wang L., Sun C., Li D.J. (2011). Estrogen enhances the functions of CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell. Mol. Immunol. 8: 50–58.

Klocke K., Holmdahl R., Wing K. (2017). CTLA-4 expressed by FOXP3+ Treg cells prevents inflammatory tissue attack and not T cell priming in arthritis. Immunology. 5 (12): 1111–1275.

Sun G. Wang Z., Ti Y., Wang Y., Wang J., Zhao J. et al. (2017). STAT3 promotes bone fracture healing by enhancing the FOXP3 expression and the suppressive function of regulatory T cells. APMIS. 11: 121–137.

Yuan C.H., Sun X.M., Zhu C.L., Liu S.P., Wu L., Chen H. et al. (2015). Amphiregulin activates regulatory T-lymphocytes and suppresses CD8+ T cell-mediated anti-tumor response in hepatocellular carcinoma cells. Oncotarget. 31: 138–153.

Weirather J., Hofmann U.D., Beyersdorf N., Ramos G.C., Vogel B., Frey et al. (2014). AFoxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 1 (115): 55–67.

Semin T.L. (2012). What are regulatory T cells (Trg) regulation in cancer and why? Cancer Biol. 22: 327–334.

Ranjan S. Wright S.K. (2017). Srivastava Immune consequences of penfluridol treatment associated with inhibition of glioblastoma tumor growth. Oncotarget. 26: 174–178.

Lerman I., Garcia-Hernandez M.L., Rangel-Moreno J., Chiriboga L., Pan C., Nastiuk K. (2017). Infiltrating Myeloid Cells Exert Pro-Tumorigenic Actions via Neutrophil Elastase. Mol Cancer Res. 16: 541–553.

Son C.H., Bae J., Lee H.R., Yang K., Park Y.S. (2017). Enhancement of antitumor immunity by combination of anti-CTLA-4 antibody and radioimmunotherapy through the suppression of Tregs. Oncol. Lett. 13: 3781–3786.

Kim K.D., Bae S., Capece T., Nedelkovska H., de Rubio R.G., Smrcka A.V. (2017). Targeted calcium influx boosts cytotoxic T lymphocyte function in the tumour microenvironment. Nat. Commun. 15: 365–370.

Autissier P., Soulas C., Burdo T.H., Williams K.C. (2010). Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytometry. Part A. 77A: 410–419.

Sinha P., Carter D., Ostrand-Rosenberg S. (2015). Myeloid-derived suppressor cells contribute to maintaining allogeneic pregnancies (IRC4P. 461). J. Immunology. 194 (1): P. 57–64.

Whiteside T.L. (2012). What are regulatory T cells (Treg) regulating in cancer and why? Semin. Cancer Biol. 4 (22): 327–334.

Khaled Y.S., Ammori B.J., Elkord E. (2014). Increased levels of granulocytic myeloid-derived suppressor cells in peripheral blood and tumour tissue of pancreatic cancer patients [Electronic resource]. J. Immunol. Res. 2014. DOI: 10.1155/2014/879897. – Mode of access: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987936/pdf/JIR2014-879897 pdf. – Date of access: 22.05.2014.

Duffy A., Zhao F., Haile L., Gamrekelashvili J., Fioravanti S., Ma C. et al. (2013). Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunol. Immunother. 62: 299–307.

Almand B., Clark J.I., Nikitina E., van Beynen J., English N.R., Knight S. et al. (2001). CIncreased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166 (1): 678–689.

Goh C., Narayanan S., Hahn Y.S. (2013). Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? Immunol. Rev. 255: 210–221.

Tacke R., Goh C., Courtney J., Polyak S.J., Rosen H. R., Hahn Y. S. (2011). Myeloid suppressor cells induced by hepatitis C virus suppress T cell responses through the production of reactive oxygen species. Hepatol. 55: 343–353.

Auffray C., Sieweke M.H., Geissmann F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Ann. Rev. Immunol. 27: 669–692.

Quan T.E., Rudenga B.J., Holers V.M., Craft J.E. et al. (2010). Epstein-Barr Virus Promotes Interferon-α Production by Plasmacytoid Dendritic Cells. Arthrit is Rheum. 62 (6): 1693–1701.

Chereshnev V.A., Husiev Ye.Yu. (2001). Immunologiia vospaleniia: rol tsitokinov [Immunology of inflammation: the role of cytokines]. Meditsinskaia immunolohiia – Medical immunology. 3 (3): 361–368 [in Russian].

Mauti L.A., Le Bitoux M.A., Baumer K., Stehle J.C., Golshayan D., Provero P. et al. (2011). Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. J. Clin. Invest. 7 (121): 2794–2807.

Wang J., Li Y.F., Jin Y.Y., Wang X., Chen T. ( 2012). XEffects of Epstein-Barr virus on the development of dendritic cells derived from cord blood monocytes: an essential role for apoptosis. Braz. J. Infect. Dis. 16 (1): 19–26.

Jian S.L., Chen W.W., Su Y.C., Su Y.W., Chuang T.H., Hsu S.C., et al (2017). Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death Dis. 11. DOI: 10.1038/cddis.2017.192. — Mode of access: https://www.ncbi.nlm.nih.gov/pubmed pdf: e2779.

Gordon S., Taylor P.R. (2005). Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5 (12): 953–964.

Chen H., Qin S., Lei A., Li X., Gao Q., Dong J. et al. (2017). Expansion of monocytic myeloid-derived suppressor cells in endometriosis patients: A pilot study. Int Immunopharmacol. 47: 150–158.

Mc Peak M.B., Youssef D., Williams D.A., Pritchett C.L., Yao Z.Q., McCall C.E. et al. (2017). Frontline Science: Myeloid cell-specific deletion of Cebpb decreases sepsis-induced immunosuppression in mice. 5. pii: jlb.4HI1216-537R. doi: 10.1189/jlb.4HI1216-537R. [Epub ahead of print]

Pilatova K., Budinská E., Bensciková B., Nenutil R., Šefr R., Fedorová L. et al. (2017). Circulating Myeloid Suppressor Cells and Their Role in Tumour Immunology. Klin. Onkol. 30: 166–169.

Huang B., Pan P.Y., Li Q., Sato A.I., Levy D.E., Bromberg J. et al. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66 (2): 1123–1131.

Serafini P., Mgebroff S., Noonan K., Borrello I. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 68 (13): 5439–5449.

Pan P.Y., Ma G., Weber K.J., Ozao-Choy J., Wang G., Yin B. (2010). Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 70 (1): 99–108.

Abrams SI. J (2017). Editorial: The rebirth of myeloid-derived suppressor cells: from adversary in cancer to ally in reproductive health. Biol. 101 (5): 1079–1083.

Du J., Sun X., Song Y. (2017). The study of CD14+HLA-DR-/low myeloid-drived suppressor cell (MDSC) in peripheral blood of peripheral T-cell lymphoma patients and its biological function. Cell Mol Biol (Noisy-le-grand). 63 (3): 62–67.

Köstlin N., Vogelmann M., Spring B., Schwarz J., Feucht J., Härtel C. et al. (2017). Granulocytic myeloid derived suppressor cells from human cord blood modulate T-helper-cell response towards an anti-inflammatory phenotype. Immunology. 2. DOI: 10.1111/imm.12751. [Epub ahead of print]

Heine A., Held S.A.E., Schulte-Schrepping J., Wolff J.F.A., Klee K., Ulas T. et al. (2017). Generation and functional characterization of MDSC-like cells. Oncoimmunology. 23 (6). e1295203. doi: 10.1080/2162402X.2017.1295203. eCollection 2017.

Yang G., AShen W., Zhang Y., Liu M., Zhang L., Liu Q. et al. (2017). Accumulation of myeloid-derived suppressor cells (MDSCs) induced by low levels of IL-6 correlates with poor prognosis in bladder cancer. Oncotarget. 20. DOI: 10.18632/oncotarget.16386. [Epub ahead of print]

Condamine T., Dominguez G.A., Youn J.I., Kossenkov A.V., Mony S., Alicea-Torres K. et al. (2016). Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorph nuclear myeloid-derived suppressor cells in cancer patients. Immunol. 1 (2). pii: aaf8943. doi: 10.1126/sciimmunol.aaf8943. [Epub ahead of print]

Li X., Xing Y.F., Lei A.H., Xiao Q., Lin Z.H., Hong Y.F. et al. (2017). Neutrophil count is associated with myeloid derived suppressor cell level and presents prognostic value of for hepatocellular carcinoma patients. Oncotarget. 11 (8). 24380–24388.

Abedi-Valugerdi M., Zheng W., Benkessou F., Zhao Y., Hassan M. (2017). Differential effects of low-dose fludarabine or 5-fluorouracil on the tumor growth and myeloid derived immunosuppression status of tumor-bearing mice. Int. Immunopharmacol. 47: 173–181.