Composite coatings with antimicrobial properties for dental implants
PDF (Українська)

Keywords

composite coatings
antimicrobial activity
hydroxylapatite
dental implants

How to Cite

Khristyan, G., Kazmirchuk, V., Ivannik, V., Yudin, I., Vozny, O., Melnik, A., & Sorokoumova, L. (2020). Composite coatings with antimicrobial properties for dental implants. Experimental and Clinical Medicine, 78(1), 82-89. Retrieved from https://ecm.knmu.edu.ua/article/view/376

Abstract

Antimicrobial properties of new composite coatings for dental implants have been studied. Methods of diffusion into agar and sequential dilutions proved their high antibacterial and antifungal activity and determined MIC and MBC/MFC relative to the reference strains of microorganisms and clinical isolates of causative agents of peri-implant diseases. Experimental samples No. 11, 12 and 17 were selected as the most promising for further research and practical implementation.
PDF (Українська)

References

Gautier H., Daculsi G., Merle C. (2001). Association of vancomycin and calcium phosphate by dynamic compaction: In vitro characterization and microbiological activity. Biomaterials. 22: 2481–2487.

Chai F., Hornez C., Blanchemain N., Neut. C, Descamps M., Hildebrand H.F. (2007). Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics Biomolecular engineering. 24 (5): 510–514.

García‐Contreras R., Argueta‐Figueroa L., Mejía‐Rubalcava C., Jiménez-Martínez R., Cuevas-Guajardo S., Sánchez-Reyna P.A. et al. (2011). Perspectives for the use of silver nanoparticles in dental practice replacement. International dental journal. 61 (6): 297–301.

Veerachamy S., Yarlagadda T., Manivasagam G., Yarlagadda P.K. (2014). Bacterial adherence and biofilm formation on medical implants: a review / S. Veerachamy. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 228 (10): 1083–1099.

Fürst M.M., Salvi G.E., Lang N.P., Persson G.R. (2007). Bacterial colonization immediately after installation on oral titanium implants. Clin. Oral.; Implants. Res. 18; 501–508.

Daubert D.M., Weinstein B.F., Bordin S., Leroux B.G., Flemming T.F. (2015). Prevalence and predictive factors for peri-implant disease and implant failure: a cross-sectional analysis. Journal of periodontology. 86 (3): 337–347.

Belibasakis G.N. (2014). Microbiological and immuno-pathological aspects of peri-implant diseases analysis. Archives of oral biology. 59 (1): 66–72.

Aoki M., Takanashi K., Matsukubo T., Yajima Y., Okuda K.; Sato T. (2012). Transmission of periodontopathic bacteria from natural teeth to implants. Clinical implant dentistry and related research. 14 (3): 406–411.

Mombelli A., Décaillet F. (2011). The characteristics of biofilms in peri‐implant disease. J. Clin. Period ontol. 38 (11): 203–213.

Melnyk A.L., Dovga I.M., Khrystian H.Ye., Radchenko O.O., Povolokina V.V., Kazmirchuk A.L. (2015). Intehralna kharakterystyka infektsiino-zapalnykh zakhvoriuvan porozhnyny rota [Integral characteristic of infectious-inflammatory diseases of the oral cavity]. Klin. ta eksperim. patol. – Clinical and experimental pathology. 1 (51): 215–220.

Khrystian H.Ye. (2017). Nanokompozytni pokryttia na osnovi hidroksylapatytu ta khitozanu dlia medychnykh imolantiv [Nanocomposite coatings based on hydroxylapatite and chitosan for medical implants]. Eksperymentalna i klinichna medytsyna – Experimental and clinical medicine. 3 (76): 26–34 [in Ukrainian].

Torianik I.I., Khrystian H.Ye., Kazmirchuk V.V., Sorokoumov V.P., Makarenko V.D., Yudin I.P. et al. (2017). Ultramikroskopichne doslidzhennia struktury nanokompozytnykh pokryttiv stomatolohichnykh implantiv z protymikrobnymy vlastyvostyamy [Ultramicroscopic study of the structure of nanocomposite coatings of dental implants with antimicrobial properties]. Materialy IV Vseukrayinskoyi naukovoyi konferentsiyi studentiv ta molodykh vchenykh z fiziolohiyi z mizhnarodnoyu uchastyu «Fiziolohiya – medytsyni, farmatsiyi ta pedahohitsi: aktualni problemy ta suchasni dosyahnennya» – Materials of the IV All-Ukrainian Scientific Conference of Students and Young Scientists in Physiology with International Participation «Physiology – Medicine, Pharmacy and Pedagogy: Actual Problems and Contemporary Achievements». Kharkiv: KhNMU: 125–126 [in Ukrainian].

Volyanskii Yu.L., Hrytsenko I.S., Shyrobokov V.P. et al. (2004). Vyvchennya spetsyfichnoii aktyvnosti protymikrobnykh likarskykh zasobiv: metodychni rekomendatsii [Study of specific activity of antimicrobial drugs: methodical recommendations]. MOZ Ukrainy. Kyiv: Derzhavnyy Farmakolohichnyy Tsentr: 38 pp. [in Ukrainian].

European Committee on Antimicrobial Susceptibility Testing. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance (2013). EUCAST, Basel, Switzerland. Electronic resource: http://www. eucast.org/clinical_breakpoints

Zhao L., Hu Y., Xu D., Cai K. (2014). Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion. Colloids Surf. 119: 115.

Hetrick E.M., Schoenfisch M.H. (2006). Reducing implant-related infections: active release strategies. Schoenfisch. Chem Soc Rev. 35: 780.

Rushchak O.V. (2014). Osnovni metody borotby z bioplivkoiu, yaku utvoryuye Сandida аlbicans [Basic methods of combating biofilm, which forms]. Biolohichni nauky: Materialy mizhnarodnoyi naukovo-praktychnoyi konferentsiyi «Aktualni pytannya suchasnoyi nauky» (October 24–25, 2014). Kyiv: 46–48.

Riau A.K. Mondal D., Aung T.T., Murugan E., Chen L.Y., Lwin N.C. et al. (2015). Collagen-based artificial corneal scaffold with anti-infective capability for prevention of perioperative bacterial infections. ACS Biomaterials Science & Engineering. 1 (12): 1324–1334.

Sadava Е.Е., Krpata D.M., Gao Y., Novitsky Y.W., Rosen M.J. (2013). Does presoaking synthetic mesh in antibiotic solution reduce mesh infections? An experimental study. Journal of Gastrointestinal Surgery. 17 (3): 562–568.

Zhong Z.M., Xing R.G., Liu S., Wang L., Cai S., Li P. (2008). Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydrate Research. 343: 566–570.

Wang X.H. Du Y.M., Liu H. (2004). Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydrate Polymers. 56: 21–26.

Bereza B.M. Nazarchuk O.A., Chepel L.I. (2014). Doslidzhennia efektyvnosti likuvalnoii kompozytsii z dekametoksynom dlya mistsevoho likuvannia hinhivitu [Study of the effectiveness of the treatment composition with decamethoxin for local treatment of gingivitis]. Biomedical and biosocial anthropology. 22: 169–172. [in Ukrainian].

Panchuk S.I., Humenyuk M.I.,. Kovalchuk V.P. (2014). Antymikrobna aktyvnist dekametoksynu shchodo bakterialnykh zbudnykiv infektsiinoho zahostrennia bronkhialnoyi astmy [Antimicrobial activity of decamethoxin in relation to bacterial pathogens of infectious exacerbation of bronchial asthma]. Medytsyna transportu Ukrayiny – Medicine of transport of Ukraine. 1: 37–42. [in Ukrainian].