Адаптаційна роль тиреоїдної системи та йоду при синдромі низького трийодтироніну: клінічне значення та стратегії реабілітації (огляд літератури, частина перша)
PDF

Ключові слова

реабілітаційна медицина
нетиреоїдні захворювання
тиреоїдні гормони
тироксин
цитокіни
фагоцитоз

Як цитувати

Білецька, О., Латогуз, С., & Гарячий, Є. (2025). Адаптаційна роль тиреоїдної системи та йоду при синдромі низького трийодтироніну: клінічне значення та стратегії реабілітації (огляд літератури, частина перша). Експериментальна і клінічна медицина, 94(3). https://doi.org/10.35339/ekm.2025.94.3.blg

Анотація

In press

Актуальність. Тиреоїдна система є важливим регулятором гомеостазу, яка впливає на енергетичний обмін, імунні реакції та процеси адаптації. У клінічній практиці синдром низького трийодтироніну при нетиреоїдних захворюваннях розглядається як адаптивна відповідь для зниження енергозатрат. Втім, однобічне трактування цього феномену обмежує розуміння його саногенетичної ролі в імунній відповіді, а також доцільності застосування йоду та гормонозамісної терапії при виснаженні адаптаційного потенціалу.  Сучасні дослідження доводять, що йод виконує не тільки структурну функцію у синтезі тиреоїдних гормонів, а й проявляє самостійні антиоксидантні та імуномодулювальні властивості.

Мета. На основі аналізу джерел обґрунтувати саногенетичне значення низького трийодтиронінового стану при голодуванні та синдромі низького трийодтироніну за нетиреоїдних захворювань і оцінити перспективи застосування препаратів йоду й замісної терапії трийодтироніном у складі комплексної реабілітаційної медицини.

Матеріали та методи. Використано метод системного аналізу та бібліосемантичний підхід. Проаналізовано публікації 2015–2025 рр., що індексуються у PubMed, Scopus, ScienceDirect, EMBASE, Medline, Cochrane Library, Google Scholar. Відбір здійснювали за ключовими словами: реабілітаційна медицина, нетиреоїдні захворювання, тиреоїдні гормони, тироксин, цитокіни, фагоцитоз. До аналізу включено огляди, клінічні та експериментальні дослідження українською й англійською мовами.

Етика дослідження. Перевага надавалась роботам, що відповідали принципам біоетики та клінічним стандартам, із чітким дизайном і коректною інтерпретацією результатів.

Результати. Історично йод застосовувався для профілактики ендемічного зобу, згодом – у хірургії та дерматології завдяки антисептичним властивостям. Сучасні дані підтверджують його антиоксидантну й імуномодулювальну дію. У пацієнтів описано два варіанти низького трийодтиронінового статусу: з нормальним та підвищеним кліренсом трийодтироніну. Перший асоціюється з голодуванням і ураженням печінки, другий – з тяжкими станами при травмах, інфекціях, ішеміях, онкопатології. Імунні клітини здатні локально регулювати метаболізм тиреоїдних гормонів і транспорт йоду, що визначає їхню роль у механізмах адаптації.

Висновки. Синдром низького трийодтироніну може мати як адаптивне, так і дезадаптивне значення при нетиреоїдних захворюваннях. Йод розглядається не лише як компонент тиреоїдних гормонів, а й як імуномодулювальний чинник. Це створює підстави для подальших досліджень із визначення оптимальної стратегії йодного забезпечення та замісної тиреоїдної терапії у складі сучасної реабілітаційної медицини.

Ключові слова: реабілітаційна медицина, нетиреоїдні захворювання, тиреоїдні гормони,  тироксин,  цитокіни, фагоцитоз.

https://doi.org/10.35339/ekm.2025.94.3.blg
PDF

Посилання

Sorrenti V, Di Giacomo C, Campagna G, Busa G, Acquaviva R, Vanella L. Iodine: Its antioxidant, antiproliferative and immunomodulatory properties. Nutrients. 2021;13(12):4469. DOI: 10.3390/nu13124469. PMID: 34960019.

Tranchitella T. Curious About Iodine Part 3: Antioxidant, Immune Support & Anti-Cancer Properties. ZRT Laboratory Blog, 13 Feb 2023. [Internet]. Available at: https://www.zrtlab.com/blog/archive/curious-about-iodine-part-3-antioxidant-immune-support-anti-cancer [accessed 17 Sep 2025].

Beadles CF. The treatment of myxedema and cretinism, being a review of the treatment of these diseases with the thyroid gland, with a table of 100 published cases. J Ment Sci. 1893;39(166):343-55. DOI: 10.1192/bjp.39.166.343.

Lozynska IN. Functional activity of the thyroid gland in cervical cancer. Clinical Radiology and Radiology. 1984;(15):103-5. [In Ukrainian].

Sillastu H. Thyroid hormones in the pathogenesis of tuberculosis. Abstr Dis Dr Med Sc. Estonia, Tartu: Faculty of Medicine of the University of Tartu, 1974. 30 p.

Biletska OM. Pathogenesis of low triiodothyronine syndrome and rational methods of correction [dissertation abstract]. Doctor of Medical Sciences, specialty 14.00.03; 14.00.14. V.P. Komissarenko Institute of Endocrinology and Metabolism, Academy of Medical Sciences of Ukraine; Kyiv; 1994. 31 p.

Lytovchenko TA, Oleinikova SP, Biletska OM, Komarova IV. Comparison of thyroid status in primary hypothyroidism and low triiodothyronine syndrome in patients with chronic leptomeningitis. Abstracts of the Scientific Conference "Structural and functional relationships in cerebral arachnoiditis" (Ukraine, Kharkiv, 1991). P. 33.

Naito K, Miura K, Yoshida K, Yoshinaga K. Changes in thyroid hormone metabolism in fasting: reduced T₃ production as an adaptive response. Endocrinol Jpn. 1981;28(6):793-801. DOI: 10.1507/endocrj1954.28.793. PMID: 7346264.

Madsen M. The low T3 state: an experimental study [dissertation]. Linköping (Sweden): Linköping University; 1986. 114 p.

Boelen A, Kwakkel J, Fliers E. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev. 2011;32(5):670-93. DOI: 10.1210/er.2011-0007. PMID: 21791567.

Lechan RM, Fekete C. Feedback regulation of thyrotropin releasing hormone: mechanisms for the non-thyroidal illness syndrome. J Endocrinol Invest. 2004;27(suppl):105-19. DOI: 10.1007/BF03345547. PMID: 16682838.

Biletska OM, Vorozhko AG, Artamonov AA. Low triiodothyronine syndrome in gastric and colorectal cancer. Materials of the All-Union Conference "Metabolic disorders and their correction in oncology". 1991:10-11.

Cauteruccio М, Vitiello R, Perisano C, Covino M, Sircana G, Piccirillo N, et al. Euthyroid sick syndrome in hip fractures: evaluation of postoperative anemia and vitamin D/PTH axis. Injury. 2020;51_Suppl_3:S9-16. DOI: 10.1016/j.injury.2020.07.006. PMID: 32669206.

Świstek M, Broncel M, Gorzelak Pabiś P, Morawski P, Fabiś M, Woźniak E. Euthyroid sick syndrome as a prognostic indicator of COVID 19 pulmonary involvement. Endocr Pract. 2022;28(5):494-501. DOI: 10.1016/j.eprac.2022.02.006. PMID: 35202790.

Fu L, Long W, Liu T, Chen Y, Wu S, Li D, et al. Decreased circulating levels of free triiodothyronine in sepsis children and correlation analysis. BMC Pediatr. 2022;22(1):687. DOI: 10.1186/s12887-022-03756-7. PMID: 36447149.

Vitiello R, Ziveri G, Riefoli F, Perna A, Maccauro G, Ziranu A. Euthyroid sick syndrome in hip fractures: Valuation of vitamin D and parathyroid hormone axis. Injury. 2020;51(Suppl_3):S13-6. DOI: 10.1016/j.injury.2020.01.013. PMID: 31983423.

Wajner SM, Goemann IM, Bueno AL, Larsen PR, Maia AL. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J Clin Invest. 2011;121(5):1834-45. DOI: 10.1172/JCI44678. PMID: 21540553.

van der Spek AH, Fliers E, Boelen A. Thyroid hormone metabolism in innate immune cells. J Endocrinol. 2017;232(2):R67-81. DOI: 10.1530/JOE-16-0462. PMID: 27852725.

Lee S, Farwell AP. Euthyroid sick syndrome. Compr Physiol. 2016;6(2):1071-80. DOI: 10.1002/cphy.c150017. PMID: 27065175.

Wenzek C, Boelen A, Westendorf AM, Engel DR, Moeller LC, Führer D. The interplay of thyroid hormones and the immune system. Eur J Endocrinol. 2021;186(5):R65-78. DOI: 10.1530/EJE-21-1171. PMID: 35175936.

Mehdi SF, Qureshi MH, Pervaiz S, Kumari K, Saji E, Shah M, et al. Endocrine and metabolic alterations in response to systemic inflammation and sepsis: influence on hypothalamic pituitary thyroid axis and prognosis. Mol Med. 2025;31(1):16. DOI: 10.1186/s10020-025-01074-z. PMID: 39838305.

Savvidis C, Ragia D, Kallistrou E, Kouroglou E, Tsiama V, Proikaki S, et al. Critical illness – implications of non-thyroidal illness syndrome and thyroxine therapy. World J Crit Care Med. 2025;14(3):102577. DOI: 10.5492/wjccm.v14.i3.102577. PMID: 40880567.

Farwell AP. Non thyroidal illness syndrome: pathophysiology, diagnosis and therapeutic implications. Curr Opin Endocrinol Diabetes Obes. 2013;20(5):478-84. DOI: 10.1097/01.med.0000433069. 09294.e8. PMID: 23974778.

Wang YF, Heng JF, Yan J, Dong L. Relationship between disease severity and thyroid function in Chinese patients with euthyroid sick syndrome. Medicine (Baltimore). 2018;97(31): e11756. DOI: 10.1097/MD.0000000000011756. PMID: 30075595.

Challacombe SJ, Kirk-Bayley J, Sunkaraneni VS, Combes J. Povidone iodine. Br Dent J. 2020;228(9):656-7. DOI: 10.1038/s41415-020-1589-4. PMID: 32385428.

Large multicenter clinical trial finds that antiseptic containing iodine reduces surgical site infections in patients with extremity fractures. University of Maryland School of Medicine, 31 Jan 2024 [Internet]. Available at: https://is.gd/G35PTQ [accessed 26 Aug 2025].

Moss GS, Bones RC, Ryan JA. Prevention of intraabdominal abscesses by peritoneal irrigation: comparison of povidone-iodine, sodium hypochlorite, and saline. Arch Surg. 1985;120(2):170-3. DOI: 10.1001/archsurg.1985.01390260050012. PMID: 2860153.

Schöne F, Rajendram R. Iodine in farm animals. Chapter 16. In: Preedy VR, Burrow GN, Watson RR, eds. Comprehensive Handbook of Iodine: Nutritional, Biochemical, Pathological and Therapeutic Aspects. 1st ed. London: Academic Press; 2017. P. 151-70. Available at: https://www.researchgate.net/publication/275098847

Aceves C, Mendieta I, Anguiano B, Delgado González E. Molecular iodine has extrathyroidal effects as an antioxidant, differentiator, and immunomodulator. Int J Mol Sci. 2021;22(3):1228. DOI: 10.3390/ijms22031228. PMID: 33513754.

Zhang L, Liu J, Wang Y, Li M. The correlation between iodine and metabolism: a review. Front Nutr. 2024;11:1346452. DOI: 10.3389/fnut.2024.1346452. PMID: 38567251.

Aceves C, Anguiano B, Delgado G. The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation factor in various tissues. Thyroid. 2013;23(8):938-46. DOI: 10.1089/thy.2012.0579. PMID: 23607319.

Bilal MY, Dambaeva S, Kwak Kim J, Gilman Sachs A, Beaman KD. A role for iodide and thyroglobulin in modulating the function of human immune cells. Front Immunol. 2017;8:1573. DOI: 10.3389/fimmu.2017.01573. PMID: 29187856.

Alexandrov VA, Tochilnikov GV, Zhilinskaya NT, et al. Therapeutic effect of iodised serum milk protein, lycopene and their combination on benign prostatic hyperplasia induced in rats. Andrologia. 2021;53(9):e14173. DOI: 10.1111/and.14173. PMID: 34185339.

Stone OJ. The role of the primitive sea in the natural selection of iodides as a regulating factor in inflammation. Med Hypotheses. 1988;25(3):125-9. DOI: 10.1016/0306-9877(88)90048-5. PMID: 3367805.

Iannaccone M, Ianni A, Elgendy R, Martino C, Giantin M, Cerretani L, et al. Iodine Supplemented Diet Positively Affect Immune Response and Dairy Product Quality in Fresian Cow. Animals (Basel). 2019;9(11):866. DOI: 10.3390/ani9110866. PMID: 31731565.

Pashkova AA, Lyubetska VG. Level of iodine-containing thyroid hormones in the blood of white rats depending on age and thyroid gland status. Bull Khark State Univ. 1980;(195):10-12.

Obregón MJ, Mallol J, Escobar del Rey F, Morreale de Escobar G. L-thyroxine and 3,5,3'-triiodo-L-thyronine in rat tissues after thyroidectomy. Endocrinology. 1981;109(3):908-13. DOI: 10.1210/endo-109-3-908. PMID: 7262025.

Nagao H, Imazu T, Hayashi H, Takahashi K, Minato K. Effects of thyroidectomy on thyroxine metabolism and turnover rate in rats. J Endocrinol. 2011;210(1):117-23. DOI: 10.1530/JOE-10-0484. PMID: 21478227.

Spitzweg C, Joba W, Eisenmenger W, Heufelder AE. Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acids from salivary gland, mammary gland, and gastric mucosa. J Clin Endocrinol Metab. 1998;83(5):1746-51. DOI: 10.1210/jcem.83.5.4839. PMID: 9589686.

Wapnir IL, van de Rijn M, Nowels K, Amenta PS, Walton K, Montgomery K, et al. Immunohistochemical profile of the sodium iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J Clin Endocrinol Metab. 2003;88(4):1880-8. DOI: 10.1210/jc.2002-021544. PMID: 12679487.

Di Cosmo C, Fanelli G, Tonacchera M, Ferrarini E, Dimida A, Agretti P, et al. The sodium-iodide symporter expression in placental tissue at different gestational age: an immunohistochemical study. Clin Endocrinol (Oxf). 2006;65(4):544-8. DOI: 10.1111/j.1365-2265.2006.02577.x. PMID: 16984250.

Catalano RD, Critchley HO, Heikinheimo O, Baird DT, Hapangama D, Sherwin JR, et al. Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007;13(9):641-54. DOI: 10.1093/molehr/gam021. PMID: 17584828.

Meischl C, Buermans HP, Hazes T, Zuidwijk MJ, Musters RJ, Boer C, et al. H9c2 cardiomyoblasts produce thyroid hormone. Am J Physiol Cell Physiol. 2008;294(5):C1227-33. DOI: 10.1152/ajpcell.00328.2007. PMID: 18322142.

Ulberg S, Evaldsson B. Distribution of radioactive iodine studied by whole-body autoradiography. Acta Radiol Ther Phys Biol. 1964;2:24-32. DOI: 10.3109/02841866409134127. PMID: 14153759.

Stolc V. Inhibitory effect of pituitary factor on phagocytosis and iodine metabolism in human leukocytes. Endocrinology. 1972;91(4):835-9. DOI: 10.1210/endo-91-4-835. PMID:5051339.

Klein JR. The immune system as a regulator of thyroid hormone activity. Exp Biol Med (Maywood). 2006;231(3):229-36. DOI: 10.1177/153537020623100301. PMID: 16514168.

Klein JR. The immune system as a regulator of thyroid hormone activity. Exp Biol Med (Maywood). 2006;231(3):229-36. DOI: 10.1177/153537020623100301. PMID: 16514168.

Harvey S, Arámburo C, Sanders EJ. Extrapituitary production of anterior pituitary hormones: an overview. Endocrine. 2012;41(1):19-30. DOI: 10.1007/s12020-011-9557-z. PMID: 22169962.

Bianco AC, da Conceição RR. The Deiodinase Trio and Thyroid Hormone Signaling. Methods Mol Biol. 2018;1801:67-83. DOI: 10.1007/978-1-4939-7902-8_8. PMID: 29892818.

Köhrle J, Brabant G, Hesch RD. Metabolism of the thyroid hormones. Horm Res. 1987;26(1-4):58-78. DOI: 10.1159/000180686. PMID: 3297964.

Peeters RP, Visser TJ. Metabolism of thyroid hormone. Chapter 15. In: Jameson JL, De Groot LJ, eds. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2017. Available at: https://www.ncbi.nlm.nih.gov/books/NBK285545/

Bruinstroop E, van der Spek AH, Boelen A. Role of hepatic deiodinases in thyroid hormone homeostasis and liver metabolism, inflammation, and fibrosis. Eur Thyroid J. 2023;12(3):e220211. DOI: 10.1530/ETJ-22-0211. PMID: 36892852.

Maia AL, Kim BW, Huang SA, Harney JW, Larsen PR. Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J Clin Invest. 2005;115(9):2524-33. DOI: 10.1172/JCI25083. PMID: 16127464.

Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Am J Physiol Endocrinol Metab. 2014;306(3):E430-41. DOI: 10.1152/physrev.00030.2013. PMID: 24692351.

Huang SA, Dorfman DM, Genest DR, Salvatore D, Larsen PR. Type 3 iodothyronine deiodinase is the major physiologic inactivator of thyroid hormone. J Clin Endocrinol Metab. 2002;88(3):1384–1389. DOI: 10.1210/jc.2002-021291. PMID: 12629133.

Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA II, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK. 3 Iodothyronine is an endogenous and rapid acting derivative of thyroid hormone. Nat Med. 2004;10(6):638-42. DOI: 10.1038/nm1051. PMID: 15146179.

Burger AG, Engler D, Buergi U, Weissel M, Steiger G, Ingbar SH, Rosin RE, Babior BM. Ether link cleavage is the major pathway of iodothyronine metabolism in the phagocytosing human leukocyte and also occurs in vivo in the rat. J Clin Invest. 1983;71(4):935-49. DOI: 10.1172/JCI110848. PMID: 6833495.

Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest. 2006;116(10):2571–2579. DOI: 10.1172/JCI29812. PMID: 17016550.

Sterenborg RBTM, Steinbrenner I, Li Y, Bujnis MN, Naito T, Marouli E, et al. Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications. Nat Commun. 2024;15(1):888. DOI: 10.1038/s41467-024-44701-9. PMID: 38291025.

Zekri Y, Guyot R, Flamant F. An atlas of thyroid hormone receptors’ target genes in mouse. Int J Mol Sci. 2023;23(19):11444. DOI: 10.3390/ijms231911444. PMID: 36232747.

Bernal J, Guadaño-Ferraz A, Morte B. Thyroid hormone transporters--functions and clinical implications. Nat Rev Endocrinol. 2015;11(7):406-17. DOI: 10.1038/nrendo.2015.66. Erratum in: Nat Rev Endocrinol. 2015;11(9):506. DOI: 10.1038/nrendo.2015.113. Erratum in: Nat Rev Endocrinol. 2015;11(12):690. DOI: 10.1038/nrendo.2015.186. PMID: 25942657.

Lu H, Li W, Shao G, Wang H. Expression of SP-C and Ki67 in lungs of preterm infants dying from respiratory distress syndrome. Eur J Histochem. 2012;56(3):e35. DOI: 10.4081/ejh.2012.e35. PMID: 23027351.

Halsall DJ, Oddy S. Clinical and laboratory aspects of 3,3′,5′-triiodothyronine (reverse T₃). Ann Clin Biochem. 2021;58(1):29-37. DOI: 10.1177/0004563220969150. PMID: 33040575.

Williams AT, Chen J, Coley K, Batini C, Izquierdo A, Packer R, et al. Genome wide association study of thyroid stimulating hormone highlights new genes, pathways and associations with thyroid disease. Nat Commun. 2023;14(1):6713. DOI: 10.1038/s41467-023-42284-5. PMID: 37872160.

Davis PJ, Mousa SA, Lin HY. Nongenomic actions of thyroid hormone: The integrin component. Physiol Rev. 2021;101(1):319-52. DOI: 10.1152/physrev.00038.2019. PMID: 32584192.

Davis PJ, Mousa SA, Lin HY. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol Rev. 2021 Jan 1;101(1):319-52. DOI: 10.1152/physrev.00038.2019. Erratum in: Physiol Rev. 2023;103(1):607. DOI: 10.1152/physrev.00038.2019_COR. PMID: 32584192.

Tang S, Li D, Ding H, Jiang M, Zhao Y, Yu D, et al. GLIS3 mediated by the Rap1/PI3K/AKT signal pathway facilitates real-ambient PM2.5 exposure disturbed thyroid hormone homeostasis regulation. Ecotoxicol Environ Saf. 2022;232:113248. DOI: 10.1016/j.ecoenv.2022.113248. PMID: 35093813.

Hatsukano T, Kurisu J, Fukumitsu K, Fujishima K, Kengaku M. Thyroid Hormone Induces PGC-1α during Dendritic Outgrowth in Mouse Cerebellar Purkinje Cells. Front Cell Neurosci. 2017;11:133. DOI: 10.3389/fncel.2017.00133. PMID: 28536504.

Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122(9):3035-43. DOI: 10.1172/JCI60047. PMID: 22945636.

Ross I, Omengan DB, Huang GN, Payumo AY. Thyroid hormone-dependent regulation of metabolism and heart regeneration. J Endocrinol. 2022;252(3):R71-82. DOI: 10.1530/JOE-21-0335. PMID: 34935637.

Smith TJ. Insulin-Like Growth Factor Pathway and the Thyroid. Front Endocrinol (Lausanne). 2021;12:653627. DOI: 10.3389/fendo.2021.653627. PMID: 34149612.

Zhu S, Pang Y, Xu J, Chen X, Zhang C, Wu B, Gao J. Endocrine Regulation on Bone by Thyroid. Front Endocrinol (Lausanne). 2022;13:873820. DOI: 10.3389/fendo.2022.873820. PMID: 35464058.

Korthagen NM, Houtman E, Boone I, Coutinho de Almeida R, Sivasubramaniyan K, Mahdad R, et al. Thyroid hormone induces ossification and terminal maturation in a preserved OA cartilage biomimetic model. Arthritis Res Ther. 2024;26(1):91. DOI: 10.1186/s13075-024-03326-5. PMID: 38664820.

Mudri D, Bilić Ćurčić I, Meštrović L, Mihaljević I, Kizivat T. Hyperthyroidism and Wnt Signaling Pathway: Influence on Bone Remodeling. Metabolites. 2023;13(2):241. DOI: 10.3390/metabo13020241. PMID: 36837860.

Sabatino L, Vassalle C. Thyroid Hormones and Metabolism Regulation: Which Role on Brown Adipose Tissue and Browning Process? Biomolecules. 2025;15(3):361. DOI: 10.3390/biom15030361. PMID: 40149897.

Montesinos MDM, Pellizas CG. Thyroid Hormone Action on Innate Immunity. Front Endocrinol (Lausanne). 2019;10:350. DOI: 10.3389/fendo.2019.00350. Erratum in: Front Endocrinol (Lausanne). 2019;10:486. DOI: 10.3389/fendo.2019.00486. PMID: 31214123.

Torimoto K, Okada Y, Nakayamada S, Kubo S, Kurozumi A, Narisawa M, Tanaka Y. Comprehensive immunophenotypic analysis reveals the pathological involvement of Th17 cells in Graves' disease. Sci Rep. 2022;12(1):16880. DOI: 10.1038/s41598-022-19556-z. PMID: 36207336.

Gallo D, Piantanida E, Gallazzi M, Bartalena L, Tanda ML, Bruno A, Mortara L. Immunological Drivers in Graves' Disease: NK Cells as a Master Switcher. Front Endocrinol (Lausanne). 2020;11:406. DOI: 10.3389/fendo.2020.00406. PMID: 32765422.

Wenzek C, Siemes D, Hönes GS, Pastille E, Härting N, Kaiser F, et al. Lack of canonical thyroid hormone receptor α signaling changes regulatory T cell phenotype in female mice. iScience. 2024;27(8):110547. DOI: 10.1016/j.isci.2024.110547. PMID: 39175769.

Lasa M, Contreras-Jurado C. Thyroid hormones act as modulators of inflammation through their nuclear receptors. Front Endocrinol (Lausanne). 2022;13:937099. DOI: 10.3389/fendo.2022.937099. PMID: 36004343.

Westgren U, Ahrén B, Burger A, Melander A. Stimulation of peripheral T₃ formation by oral but not by intravenous glucose administration in fasted subjects. Acta Endocrinol (Copenh). 1977;85(3):526-30. DOI: 10.1530/acta.0.0850526. PMID: 577337.

Boelen A, van der Spek AH, Bloise F, de Vries EM, Surovtseva OV, van Beeren M, et al. Tissue thyroid hormone metabolism is differentially regulated during illness in mice. J Endocrinol. 2017;233(1):25-36. DOI: 10.1530/JOE-16-0483. PMID: 28130411.

Sui X, Jiang S, Zhang H, Wu F, Wang H, Yang C, et al. The influence of extended fasting on thyroid hormone: local and differentiated regulatory mechanisms. Front Endocrinol (Lausanne). 2024;15:1443051. DOI: 10.3389/fendo.2024.1443051. PMID: 39253586.

O'Mara BA, Dittrich W, Lauterio TJ, St Germain DL. Pretranslational regulation of type I 5'-deiodinase by thyroid hormones and in fasted and diabetic rats. Endocrinology. 1993;133(4):1715-23. DOI: 10.1210/endo.133.4.8404614. PMID: 8404614.

Saghatelian A, Cravatt B. Glucagon and Thyroid Hormone: A Championship Team. Cell. 2016;167(3):604-5. DOI: 10.1016/j.cell.2016.10.008. PMID: 27768884.

Evans RM, Birnberg NC, Rosenfeld MG. Glucocorticoid and thyroid hormones transcriptionally regulate growth hormone gene expression. Proc Natl Acad Sci U S A. 1982;79(24):7659-63. DOI: 10.1073/pnas.79.24.7659. PMID: 6296844.

Chopra IJ, Huang TS, Beredo A, Solomon DH, Chua Teco GN, Mead JF. Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3,5,3'-triiodothyronine in sera of patients with nonthyroidal illnesses. J Clin Endocrinol Metab. 1985;60(4):666-72. DOI: 10.1210/jcem-60-4-666. PMID: 2857729.

DeGroot LJ, Coleoni AH, Rue PA, Seo H, Martino E, Refetoff S. Reduced nuclear triiodothyronine receptors in starvation-induced hypothyroidism. Biochem Biophys Res Commun. 1977;79(1):173-8. DOI: 10.1016/0006-291x(77)90076-6. PMID: 200237.

de Vries EM, Eggels L, van Beeren HC, Ackermans MT, Kalsbeek A, Fliers E, Boelen A. Fasting-induced changes in hepatic thyroid hormone metabolism in male rats are independent of autonomic nervous input to the liver. Endocrinology. 2014;155(12):5033-41. DOI: 10.1210/en.2014-1608. PMID: 25243858.

Bianco AC, McAninch EA. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol. 2013;1(3):250-8. DOI: 10.1016/S2213-8587(13)70069-X. PMID: 24622373.

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.