Використання штучного інтелекту в ортодонтії
PDF

Ключові слова

стоматологія
діагностика
машинне навчання
цефалометрія

Як цитувати

Кузик, І., & Котельбан, А. (2023). Використання штучного інтелекту в ортодонтії. Експериментальна і клінічна медицина, 92(4), 70-80. https://doi.org/10.35339/ekm.2023.92.4.kuk

Анотація

Застосування штучного інтелекту (ШІ) в ортодонтії є дуже різноманітним й варіюється від ідентифікації анатомічних та патологічних структур зубо-щелепного апарату людини до підтримки прийняття складних рішень у плануванні ортодонтичного лікування. Метою даної роботи було проаналізувати сучасні погляди на використання методик та моделей штучного інтелекту в ортодонтії на основі проведення огляду літератури. Було опрацьовано наукові публікації різних наукометричних баз данних (PubMed, Scopus, Google Scolar та Web of Science) протягом останніх 5 років. Штучний інтелект є одним із найперспективніших інструментів завдяки високій точності та ефективності роботи. Практикуючі стоматологи зможуть використовувати його як додатковий інструмент для зменшення робочого навантаження. Однак для цього потрібна тісна кооперація комерційних продуктів ШІ з науковим співтовариством, подальші дослідження, включаючи рандомізовані клінічні випробування, з метою апробації та інтеграції цієї концепції в стоматологічній практиці.

Ключові слова: стоматологія, діагностика, машинне навчання, цефалометрія.

https://doi.org/10.35339/ekm.2023.92.4.kuk
PDF

Посилання

Junaid N, Khan N, Ahmed N, Abbasi MS, Das G, Maqsood A. Development, application, and performance of artificial intelligence in cephalometric landmark identification and diagnosis: a systematic review. Healthcare. 2022;10(12):2454. DOI: 10.3390/healthcare10122454. PMID: 36553978.

Ding H, Wu J, Zhao W, Matinlinna JP, Burrow MF, Tsoi JKH. Artificial intelligence in dentistry – A review. Front Dent Med. 2023. DOI:10.3389/fdmed.2023.1085251.

Im J, Kim J, Yu H, Lee KJ, Choi SH, Kim JH et al. Accuracy and efficiency of automatic tooth segmentation in digital dental models using deep learning. Sci Rep. 2022;12(1):9429. DOI: 10.1038/s41598-022-13595-2. PMID: 35676524.

Kunz F, Stellzig-Eisenhauer A, Boldt J. Applications of Artificial Intelligence in Orthodontics – An Overview and Perspective Based on the Current State of the Art. Appl Sci. 2023;13(6):3850. DOI: 10.3390/app13063850.

Arik SO, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging. 2017;4:014501. DOI: 10.1117/1.JMI.4.1.014501. PMID: 28097213.

Nishimoto S, Sotsuka Y, Kawai K, Ishise H, Kakibuchi M. Personal Computer-Based Cephalometric Landmark Detection with Deep Learning, Using Cephalograms on the Internet. J Craniofac Surg. 2019;30:91-5. DOI: 10.1097/SCS.0000000000004901. PMID: 30439733.

Zhong Z, Li J, Zhang Z, Jiao Z, Gao X. An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms. Cornell University; 2019. P. 540-8. DOI: 10.48550/arXiv.1906.07549.

Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric analysis in orthodontics using artificial intelligence-A comprehensive review. Biomed Res Int. 2022;2022:1880113. DOI: 10.1155/2022/1880113. PMID: 35757486.

Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020;99(3):249-56. DOI: 10.1177/0022034520901715. PMID: 31977286.

Kim H, Shim E, Park J, Kim Y, Lee U, Kim Y. Web-based fully automated cephalometric analysis by deep learning. Comput Methods Programs Biomed. 2020;194:105513. DOI: 10.1016/j.cmpb.2020.105513. PMID: 32403052.

Lee JH, Yu HJ, Kim MJ, Kim JW, Choi J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health. 2020;20(1):270. DOI: 10.1186/s12903-020-01256-7.

Schwendicke F, Chaurasia A, Arsiwala L, Lee JH, Elhennawy K, Jost-Brinkmann PG, et al. Deep learning for cephalometric landmark detection: Systematic review and meta-analysis. Clin Oral Investig. 2021;25:4299-309. DOI: 10.1007/s00784-021-03990-w. PMID: 34046742.

Moon JH, Hwang HW, Yu Y, Kim MG, Donatelli RE, Lee SJ. How much deep learning is enough for automatic identification to be reliable?: A cephalometric example. Angle Orthod. 2020;90(6):823-30. DOI: 10.2319/021920-116.1. PMID: 33378507.

Choi YJ, Lee KJ. Possibilities of artificial intelligence use in orthodontic diagnosis and treatment planning: Image recognition and three-dimensional VTO. Semin Orthod. 2021;27(2):121-9. DOI: 10.1053/j.sodo.2021.05.008.

Zhou J, Zhou H, Pu L, Gao Y, Tang Z, Yang Y, et al. Development of an Artificial Intelligence System for the Automatic Evaluation of Cervical Vertebral Maturation Status. Diagnostics. 2021;11:2200. DOI: 10.3390/diagnostics11122200. PMID: 34943436.

Kim DW, Kim J, Kim T, Kim T, Kim YJ, Song IS, et al. Prediction of hand-wrist maturation stages based on cervical vertebrae images using artificial intelligence. Orthod Craniofac Res. 2021;24:68-75. DOI: 10.1111/ocr.12514. PMID: 34405944.

Kok H, Acilar AM, İzgi MS. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog Orthod. 2019;20(1):41. DOI: 10.1186/s40510-019-0295-8. PMID: 31728776.

Seo H, Hwang J, Jeong T, Shin J. Comparison of Deep Learning Models for Cervical Vertebral Maturation Stage Classification on Lateral Cephalometric Radiographs. J Clin Med. 2021;10:3591. DOI: 10.3390/jcm10163591. PMID: 34441887.

Guo YC, Han M, Chi Y, Long H, Zhang D, Yang J, Yang Y, Chen T, Du S. Accurate age classification using manual method and deep convolutional neural network based on orthopantomogram images. Int J Legal Med. 2021;135:1589-97. DOI: 10.1007/s00414-021-02542-x. PMID: 33661340.

Nguyen TT, Larrivee T, Lee A, Bilaniuk O, Durand R. Use of artificial intelligence in dentistry: current clinical trends and research advances. J Can Dent Assoc. 2021;87(7):1488-2159. PMID: 34343070.

Takada K. Artificial intelligence expert systems with neural network machine learning may assist decision-making for extractions in orthodontic treatment planning. J Evid-Based Dent Pract. 2016;16:190-2. DOI: 10.1016/j.jebdp.2016.07.002. PMID: 27855838.

Jung SK, Kim TW. New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofacial Orthop. 2016;149(1). DOI: 10.1016/j.ajodo.2015.07.030. PMID: 26718386.

Real AD, Real OD, Sardina S, Oyonarte R. Use of automated artificial intelligence to predict the need for orthodontic extractions. Korean J Orthod. 2022;52:102-11. DOI: 10.4041/kjod.2022.52.2.102. PMID: 35321949

Jung SK, Kim TW. New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofacial Orthop. 2016;149:127-33. DOI: 10.1016/j.ajodo.2015.07.030. PMID: 26718386.

Thanathornwong B. Bayesian-based decision support system for assessing the needs for orthodontic treatment. Healthc Inform Res. 2018;24(1):22-8. DOI: 10.4258/hir.2018.24.1.22. PMID: 29503749.

Kim YH, Park JB, Chang MS, Ryu JJ, Lim WH, Jung SK. Influence of the Depth of the Convolutional Neural Networks on an Artificial Intelligence Model for Diagnosis of Orthognathic Surgery. J Pers Med. 2021;11:356. DOI: 10.3390/jpm11050356. PMID: 33946874.

Shin W, Yeom H-G, Lee GH, Yun JP, Jeong SH, Lee JH, et al. Deep learning based prediction of necessity for orthognathic surgery of skeletal malocclusion using cephalogram in Korean individuals. BMC Oral Health. 2021;21(1):1-7. DOI: 10.1186/s12903-021-01513-3.

Choi HI, Jung SK, Baek S, Lim WH, Ahn SJ, Yang IH, et al. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery. J Craniofac Surg. 2019;30(7):1986-9. DOI: 10.1097/SCS.0000000000005650. PMID: 31205280.

Lin G, Kim PJ, Baek SH, Kim HG, Kim SW, Chung JH. Early prediction of the need for orthognathic surgery in patients with repaired unilateral cleft lip and palate using machine learning and longitudinal lateral cephalometric analysis data. J Craniofac Surg. 2021;32(2):616-20. DOI: 10.1097/SCS.0000000000006943. PMID: 33704994.

Jeong SH, Yun JP, Yeom HG, Lim HJ, Lee J, Kim BC. Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs. Sci Rep. 2020;10(1):16235. DOI: 10.1038/s41598-020-73287-7.

Obwegeser D, Timofte R, Mayer C, Eliades T, Bornstein MM, Schatzle MA, Patcas R. Using artificial intelligence to determine the influence of dental aesthetics on facial attractiveness in comparison to other facial modifications. Eur J Orthod. 2022;44(4):445-51. DOI: 10.1093/ejo/cjac016. PMID: 35532375.

Miranda F, Barone S, Gillot M, Baquero B, Anchling L, Hutin N et al. Artificial Intelligence Applications in Orthodontics. J Calif Dent Assoc. 2023;51(1). DOI: 10.1080/19424396.2023.2195585.

Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res. 2020;99(7):769-74. DOI: 10.1177/0022034520915714. PMID: 32315260.

Li Q, Chen K, Han L, Zhuang Y, Li J, Lin J. Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN. J Xray Sci Technol. 2020;28:905-22. DOI: 10.3233/XST-200678. PMID: 32986647.

Cui Z, Li C, Chen N, Wei G, Chen R, Zhou Y, et al. TSegnet: an efficient and accurate tooth segmentation network on 3D dental model. Med Image Anal. 2021;69:101949. DOI: 10.1016/j.media.2020.101949. PMID: 33387908.

Cui Z, Fang Y, Mei L, Zhang B, Yu B, Liu J, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat Commun. 2022;13(1):1-11. DOI: 10.1038/s41467-022-29637-2.

Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: a scoping review. J Dent. 2019;91:103226. DOI: 10.1016/j.jdent.2019.103226. PMID: 31704386.

Chandrashekar G, AlQarni S, Bumann E, Lee Y. Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs. Comput Biol Med. 2022;148:105829. DOI: 10.1016/j.compbiomed.2022.105829.

Krois J, Ekert T, Meinhold L, Golla T. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep. 2019;9(1):8495. DOI: 10.1038/s41598-019-44839-3.

Hou S, Zhou T, Liu Y, Dang P, Lu H, Shi H. Teeth U-Net: A segmentation model of dental panoramic X-ray images for context semantics and contrast enhancement. Comput Biol Med. 2022;152:106296. DOI: 10.1016/j.compbiomed.2022.106296. PMID: 36462370.

Strunga M, Urban R, Surovkova J, Thurzo A. Artificial Intelligence Systems Assisting in the Assessment of the Course and Retention of Orthodontic Treatment. Healthcare (Basel). 2023;11(5):683. DOI: 10.3390/healthcare11050683. PMID: 36900687.

Helbostad JL, Vereijken B, Becker C, Todd C, Taraldsen K, Pijnappels M, et al. Mobile Health Applications to Promote Active and Healthy Ageing. Sensors. 2017;17:622. DOI: 10.3390/s17030622. PMID: 28335475.

Pfeil JN, Rados DV, Roman R, Katz N, Nunes LN, Vigo A, Harzheim E. A Telemedicine Strategy to Reduce Waiting Lists and Time to Specialist Care: A Retrospective Cohort Study. J Telemed Telecare. 2020;29:10-7. DOI: 10.1177/1357633X20963935. PMID: 33070689.

Thurzo A, Kurilova V, Varga I. Artificial Intelligence in Orthodontic Smart Application for Treatment Coaching and Its Impact on Clinical Performance of Patients Monitored with AI-Telehealth System. Healthcare. 2021;9:1695. DOI: 10.3390/healthcare9121695. PMID: 34946421.

Hansa I, Katyal V, Ferguson DJ, Vaid N. Outcomes of Clear Aligner Treatment with and without Dental Monitoring: A Retrospective Cohort Study. Am J Orthod Dentofacial Orthop. 2021;159:453-9. DOI: 10.1016/j.ajodo.2020.02.010. PMID: 33573897.

Dalessandri D, Sangalli L, Tonni I, Laffranchi L, Bonetti S, Visconti L, et al. Attitude towards Telemonitoring in Orthodontists and Orthodontic Patients. Dent J. 2021;9:47. DOI: 10.3390/dj9050047. PMID: 33921925.

Impellizzeri A, Horodinsky M, Barbato E, Polimeni A, Salah P, Galluccio G. Dental Monitoring Application: It Is a Valid Innovation in the Orthodontics Practice? Clin Ter. 2020;171:e260-7. DOI: 10.7417/CT.2020.2224. PMID: 32323716.

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.