Abstract
Despite the obvious progress in understanding the mechanisms of the neurodegenerative process, many questions of the pathogenesis of this group of diseases remain poorly understood, and the diseases themselves are considered incurable. Multiple sclerosis and Wilson-Konovalov’s disease, despite the fact that they belong to different groups, have common pathogenetic features in the form of the development of degenerative changes in the central nervous system at definite stage of the disease. A number of works are devoted to studying the role of neurotrophic factors in the pathogenesis and treatment of neurodegenerative pathology, however, there are relatively few such works, and the data presented in them are often contradictory. The article presents a study of the blood serum of patients with remitting-recurrent multiple sclerosis at the stage of relapse and patients with Wilson-Konovalov’s disease with neurological manifestations. We examined 24 patients with relapsing remitting multiple sclerosis at the acute stage and 9 patients with Wilson-Konovalov’s disease. The control group consisted of 30 people without neurological diseases. In the group of patients with multiple sclerosis at the acute stage, the concentration of neurotrophic factor BDNF was higher compared to the group of patients with Wilson-Konovalov’s disease. The data obtained indicate that BDNF can serve as an indicator of the development of a degenerative scenario for the course of relapsing-relapsing multiple sclerosis. Determining the concentration of BDNF can be used as a monitoring of the activity of the atrophic process and the effectiveness of treatment and rehabilitation measuresReferences
Lobher D., Golner S., Hjelmhaug J. (2003). Neurotrophic factor effect on oxidative stress-induced neuronal death. Neurochem. Res., vol. 28 (5), pp. 749–756.
Hayley S., Litteljohn D. (2013). Neuroplasticity and the next wave of antidepressant strategies. Front. Cell. Neurosci, vol. 7, p. 218, DOI: 10.3389/fncel.2013.00218
Binder D.K., Scharfman H.E. (2004). Brain-derived neurotrophic factor. Growth Factors, vol. 9, pp. 123–131, DOI: 10.1080/08977190410001723308
Lewin O. R., Barde Y. A. (1996). Phisiology of the neurotrophins. Annu Rev Neurosci, vol. 19, pp. 289–317. DOI: 10.1146/annurev.ne.19.030196.001445
Hohlfeld R., Kerschensteiner M., Stadelmann C. et al. (2000). The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J Neuroimmunol, vol.107, pp. 161–166, DOI: 10.1016/s0165-5728(00)00233-2
Tobias C. A., Shumsky J.S., Shibata M. (2003). Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting; partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp. Neurol., vol. 184 (1), pp. 97–113, DOI: 10.1016/s0014-4886(03)00394-7
Tokumine J., Kakinohana O., Cizkova D. et al. (2003). Changes in spinal GDNF, BDNF, and NT-3 expression after transient spinal cord ischemia in the rat. J.Neurosci Res., vol. 74 (4), pp. 552–561, DOI: 10.1002/jnr.10760
Shmigol M.V., Levchuk L.A., Lebedeva E.V. et al. (2011). Izucheniye svyazi polimorfnogo lokusa gena mozgovogo neyrotroficheskogo faktora (BDNF) s depressivnymi rasstroystvami [The study of the relationship of the polymorphic locus of the brain neurotrophic factor gene (BDNF) with depressive disorders]. Sbornik statey po materialam shkoly molodykh uchenykh v oblasti psikhicheskogo zdorov'ya. g. Suzdal' – Collection of articles on materials of the school of young scientists in the field of mental health. Suzdal, pp. 38–39 [in Russian].
Levchuk L.A., Lebedeva E.V., Shmigol M.V. et al. (2012). Issledovaniya polimorfizma gena mozgovogo neyrotrofizicheskogo faktora u lits s depressivnymi i komorbidnymi serdechno-sosudistymi zabolevaniyami [Studies of the polymorphism of the brain neurotrophysical factor gene in individuals with depressive and comorbid cardiovascular diseases]. Fundamental research, vol. 5 (2), pp. 115–125 [in Russian].
Abe Y., Yamamoto T., Sugiyama Y. (1999). Apoptotic cells associated with Wallerian degeneration after experimental spinal cord injury: A possible mechanism of oligodendroglial death. J. Neurotrauma, vol. 10, pp. 954–952, DOI: 10.1089/neu.1999.16.945
Gusev E.I., Bojko A.N., Hachanova N.V. (2006). Neyroprotektivnoye vliyaniye dlitel'nogo kursa beta-interferonov pri rasseyannom skleroze: pryamyye i nepryamyye mekhanizmy [Neuroprotective effect of a long course of beta-interferons in multiple sclerosis: direct and indirect mechanisms]. Journal of Neurology and Psychiatry S. S. Korsakova – Journal of Neurology and Psychiatry. S. S. Korsakova, vol. 6, pp. 154–186 [in Russian].
Shmidt T.E., Yahno N.N. (2010). Rasseyannyy skleroz: rukovodstvo dlya vrachey [Multiple sclerosis: a guide for doctors. (2d ed.)] M.: MEDpress-inform, 272р. [in Russian].
Damasceno A., Cendes F., Moraes A.S. et al. (2014). Serum BDNF levels are not reliable correlates of neurodegeneration in MS patients. Mult Scler Relat Disord, vol. 4 (1), pp. 65–66, DOI: 10.1016/j.msard.2014.11.003.
Bojko A.N., Petrov S.V., Gusev E.I. (2004). Neyroprotektsiya – novoye napravleniye v lechenii rasseyannogo skleroza. Rasseyannyy skleroz i drugiye demiyeliniziruyushchiye zabolevaniya [Neuroprotection is a new direction in the treatment of multiple sclerosis. Multiple sclerosis and other demyelinating diseases]. M.: Miklos, pp.452–472 [in Russian].
Vanderlocht J., Hellings N., Hendriks J.J. et al. (2006). Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-α-induced oligodendrocyte apoptosis. J Neurosci Res., vol. 83, pp. 763–774, DOI: 10.1002/jnr.20781.
Vorobeva A.A. (2014). Markery neyrodegeneratsii pri rasseyannom skleroze (kliniko-biokhimicheskoye issledovaniye) [Markers of neurodegeneration in multiple sclerosis (clinical and biochemical research)]. Extended abstract of candidate`s thesis of medical sciences. Moscow, 32р. [in Russian].
Zinkovskij A.K., Musina L.O., Zinkovskij K.A. (2011). Pokazateli izmeneniya urovnya tsiliarnogo neyrotroficheskogo faktora u zhenshchin s razlichnoy stepen'yu progrediyentnosti epilepsii do i posle lecheniya tseraksonom [Indicators of changes in the level of ciliary neurotrophic factor in women with varying degrees of progression of epilepsy before and after treatment with ceraxon]. Sovremennyye problemy nauki i obrazovaniya – Modern problems of science and education, vol. 6, URL: http://www.science-education.ru/100-5253 [in Russian].
Sarchielli P., Greco L., Stipa A. et al. (2002). Brain-derived neurotrophic factor in patients with multiple sclerosis. J Neuroimmunol, vol. 132 (1-2), pp. 180–188, DOI: 10.1016/s0165-5728(02)00319-3.
Yoshimura S., Ochi H., Isobe N. et al. (2010). Altered production of brain-derived neurotrophic factor by peripheral blood immune cells in multiple sclerosis. Multiple sclerosis journal, vol. 16, pp. 1178–1188, DOI: 10.1177/1352458510375706
Voloshin-Gaponov I.K. (2013). Strukturnyye izmeneniya golovnogo mozga u bol'nykh s gepatotserebral'noy degeneratsiyey [Structural changes in the brain in patients with hepatocerebral degeneration]. Mezhdunarodnyy nevrologicheskiy zhurnal – International Neurological Journal, vol. 2 (56), pp. 9–16 [in Russian].
Frank-Cannon T.C., Alto L.T., McAlpine F.E., Tansey M.G. (2009). Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener, vol. 4, p 47, DOI: 10.1186/1750-1326-4-47
Gromadzka G., Schmidt H.H., Genschel J. et al. (2005). Frameshift and nonsense mutations in the gene for ATPase7B are associated with severe impairment of copper metabolism and with an early clinical manifestation of Wilson’s disease. Clin Genet., vol. 68, pp. 524–532, DOI: 10.1111/j.1399-0004.2005.00528.x