Laser flow cytometry: physical basis and its application in the phagocytic process assessment
PDF

Keywords

flow cytometry
neutrophilis, phagocytosis
reactive oxygen species

How to Cite

Ivanenko , M. O. (2020). Laser flow cytometry: physical basis and its application in the phagocytic process assessment. Experimental and Clinical Medicine, 79(2–3), 66-70. Retrieved from https://ecm.knmu.edu.ua/article/view/412

Abstract

This article reviews the physical principles of the laser flow cytometry method, and shows its possibilities for medical and biological science. The method is effective to solve important tasks in the phagocytic process assessment. It is significant to study phagocytic parameters for the comprehensive analysis of diagnosis, either for primary or secondary immunodeficiency conditions – frequent recurrent inflammations, predisposition to postoperative complications.
PDF

References

. Mykytyuk O. Yu. (2015). Flow cytometry: physical bases and practical application in medicine and biology, Bulletin of biological and medical problems, Issue. 2(1):214–217.[in Russian].

Gordon S. (2016). Phagocytosis: an immunobiologic process. 44(3):463–475. DOI:10.1016/j.immuni.2016.02.026

Walker (2017). LSK. EFIS Lecture: Understanding the CTLA-4 checkpoint in the maintenance ofimmune homeostasis. Immunol Lett. 184:43–50. DOI: 10.1016/j.imlet.2017.02.007

Jin Q., Jiang L., Chen Q., Li X., Xu Y., Sun X., Zhao Z., Wei L. (2018). Rapid flow cytometry-based assay for the evaluation of γδ T cellmediated cytotoxicity. Mol Med Rep 17(3):3555–3562. DOI:10.3892.mmr.2017.8281.

Rőszer T. (2015). Understanding the mysterious M2 macrophage through activation markers and effector mechanisms, Mediators Inflamm, 2015:816–460.DOI: 10.1155/2015/816460.

Castelo–Branco С. (2014). The immune system and aging: a review, Gynecol. Endocrinol,; 30(1):16–22. DOI: 10.3109/09513590.2013.852531.

Kandarian F., Sunga G. M., Arango-Saenz D., Rossetti M. (2017). A flow cytometry–based cytotoxicity assay for the assessment of human NK cell activity. J. Vis. Exp. (126), DOI:10.3791/56191.

Jeffery H. C., Jeffery L. E., Lutz P., Corrigan M., Webb G. J., Hirschfield G. M., et al. (2017). Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin. Exp. Immunol. 188:394–411. DOI:10.1111/cei.12940.

Woods D. M., Ramakrishnan R., Sodré A. L., Berglund A., Weber J. (2017). PD-1 blockade induces phosphorylated STAT3 and results in an increase of T regs with reduced suppressive function. J. Immunol. 198:56–57.

Meindl C., Öhlinger K.,Ober J., Roblegg E., Fröhlich E. (2017). Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro J. Tox. 378: 25–36. DOI: 10.1016/j.tox.2017.01.001

Davies L. C, Rosas M., Jenkins S. J., Liao C. T, Scurr M. J., Brombacher F. (2013). Distinct bone marrow–derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 4:1886. DOI: 10.1038/ncomms2877.

Davies L. C, Rosas M., Smith P. J., Fraser D. J., Jones S. A., Taylor P. R. (2011). A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol. 1(8):2155–64. DOI: 10.1002/eji.201141817.

Soehnlein O, Lindbom L. (2010). Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol. 10(6):427–39. DOI: 10.1038/nri2779.

Dovhyy R. S., Skivka L. M. (2017). Functional state of alveolar macrophages and neutrophils of bone marrow of mice of various ages. Journal of Biology and Medicine, Issue 1(139). 79–84.[in Russian].

Woo J. M. (2012). Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen , Mol Vis. 18:901–8.