Abstract
The prospects of developing several pharmacological strategies related to detoxification of peroxynitrite and inhibition of the nitration of protein tyrosines by this nitroxidant are being considered. An increase in the level of nitrotyrosine is a consequence of the pathogenic mechanism of superoxide-induced endothelial dysfunction observed in various diseases. A significant part of peroxynitrite is neutralized by erythrocytes; however, with nitroxidative stress, their dysfunction develops, which can contribute to micro- and macrovascular diseases. In this aspect internal erythrocyte dysfunction can be the object of attention for investigating the possibility of developing a pharmacological strategy for stimulating the antioxidant potential of red blood cells.References
Afanasiev I. (2011). ROS and RNS signaling in heart disorders: could antioxidant treatment be successful? Oxid. Med. Cell. Longev., 293769. Published online. DOI: 10.1155/2011/293769.
Farías J.G., Molina V.M., Carrasco R.A., Zepeda AB, Figueroa E., Letelier P., Castillo R.L. (2017). Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients, v. 9, № 9. pii: E966. DOI: 10.3390/nu9090966.
Kuhn V., Diederich L., Keller T.C.S., Kramer C.M., Lückstädt W., Panknin C. et al. (2017). Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, Anemia. Antioxid Redox Signal, vol. 26, № 13. pp. 718–742. DOI: 10.1089/ars.2016.6954.
Marchesi C., Ebrahimian T., Angulo O., Paradis P., Schiffrin E.L. (2009). Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension, vol. 54, № 6. pp. 1384–1392. DOI: 10.1161/HYPERTENSIONAHA. 109.138305.
Pacher P., Beckman J.S., Liaudet L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., vol. 87, № 1, pp. 315–424.
Peluffo G., Radi R. (2007). Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc. Res., vol. 75, № 2, pp. 291–302.
Rodríguez-Mañas L., El-Assar M., Vallejo S., López-Dóriga P., Solís J., Petidier R. et al. (2009). Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging. Cell, vol. 8, № 3, pp. 226–238. DOI: 10.1111/j.1474-9726.2009.00466.x.
Stadler K. (2011). Peroxynitrite-driven mechanisms in diabetes and insulin resistance the latest advances. Curr. Med. Chem., vol. 18, № 2. pp. 280–290.
Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol., vol. 39, № 1, p. 44–84.
Romero N., Denicola A., Radi R. (2006). Red blood cells in the metabolism of nitric oxide-derived peroxynitrite. IUBMB Life, vol. 58, № 10, pp. 572–580. DOI: 10.1080/15216540600936549
Carballal S., Bartesaghi S., Radi R. (2014). Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim. Biophys. Acta, vol. 1840, № 2, pp. 768–780. DOI: 10.1016/j.bbagen.2013.07.005.
Вosman G.J. (2016). The involvement of erythrocyte metabolism in organismal homeostasis in health and disease. Proteomics Clin. Appl. vol. 10, № 8, pp. 774–777. DOI: 10.1002/prca.201500129.
Ellsworth M.L., Ellis C.G., Sprague R.S. (2016). Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle. Acta Physiol (Oxf), vol. 216, № 3, pp. 265–276. DOI: 10.1111/apha.12596.
Grau M., Pauly S., Ali J., Walpurgis K., Thevis M., Bloch W., Suhr F. (2013). RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One. vol. 8, № 2. e56759. DOI: 10.1371/journal.pone.0056759.
Helms C.C., Gladwin M.T., Kim-Shapiro D.B. (2018). Erythrocytes and vascular function: oxygen and nitric oxide. Front Physiol. vol. 9, № 125. DOI: 10.3389/ fphys.2018.00125. eCollection 2018.
Rifkind J.M., Nagababu E. (2013). Hemoglobin redox reactions and red blood cell aging. Antioxid. Redox. Signal, vol. 18, № 17, pp. 2274–2283. DOI: 10.1089/ars.2012.4867.
Galli F., Rossi R., Di Simplicio P., Floridi A., Canestrari A. (2002). Protein thiols and glutathione influence the nitric oxide-dependent regulation of the red blood cell metabolism. Nitric Oxide, vol. 6, № 2, pp. 186–199.
Mallozzi C., Di Stasi A.M., Minetti M. (1997). Peroxynitrite modulates tyrosine-dependent signal transduction pathway of human erythrocyte band 3. FASEB J., vol. 11, № 14, pp. 1281–1290.
Metere A., Iorio E., Pietraforte D., Podo F., Minetti M. (2009). Peroxynitrite signaling in human erythrocytes: synergistic role of hemoglobin oxidation and band 3 tyrosine phosphorylation. Arch. Biochem. Biophys., vol. 484, № 2, pp. 173–182. DOI: 10.1016/j.abb.2008.10.025.
Snyder L.M., Fortier N.L., Trainor J., Jacobs J., Leb L., Lubin B. (1985). Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J. Clin. Invest., vol. 76, pp. 1971–1977.
Celedón G., González G., Pino J., Lissi E.A. (2007). Peroxynitrite oxidizes erythrocyte membrane band 3 protein and diminishes its anion transport capacity. Free Radic. Res., vol. 41, № 3, pp. 316–323.
Mohanty J.G., Nagababu E., Rifkind J.M. (2014). Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol., vol. 5, p. 84. DOI: 10.3389/fphys.2014.00084. eCollection 2014.
Liaudet L., Vassalli G., Pacher P. (2009). Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front Biosci (Landmark Ed)., vol. 14, pp. 4809–4814.
Zou M.H. (2007). Peroxynitrite and protein tyrosine nitration of prostacyclin synthase. Prostaglandins Other Lipid Mediat. vol. 82, № 1–4, pp. 119–127. DOI: 10.1016/j.prostaglandins.2006.05.005
Szabó C., Ischiropoulos H., Radi R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug. Discov., vol. 6, № 8, pp. 662–680.
Lang F., Abed M., Lang E., Föller M. (2014). Oxidative stress and suicidal erythrocyte Death. Antioxid. Redox. Signal. vol. 21, № 1, pp. 138–153. DOI: 10.1089/ars.2013.5747.
Ertabak A., Kutluay T., Unlü A., Türközkan N., Çimen B., Yaman H. (2004). The effect of desferrioxamine on peroxynitrite-induced oxidative damage in erythrocytes. Cell. Biochem. Funct., vol. 22, № 3, pp. 149–152.
Harisa G.I. (2014). Mitigation of lead-induced neurotoxicity by the naringin: erythrocytes as neurons substitute markers. Biol. Trace Elem. Res. vol. 159, № 1–3, pp. 99–106. DOI: 10.1007/s12011-014-9996-5.
Yapislar H., Aydogan S. (2012). Effect of carnosine on erythrocyte deformability in diabetic rats. Arch. Physiol. Biochem., vol. 118, № 5, pp. 265–272. doi: 10.3109/13813455.2012.714790.
Maletić S.D., Ognjanović B.I., Stajn A.S. et al. (2003). Effects of molsidomine on changes in oxidant/antioxidant status of rat erythrocytes. Med. Pregl. vol. 56, № 1, pp. 73–77.
Delwing-de Lima D., Hennrich S.B., Delwing-Dal Magro D., Aurélio J.G., Serpa A.P., Augusto T.W., Pereira N.R. (2017). The effect of d-galactose induced oxidative stress on in vitro redox homeostasis in rat plasma and erythrocytes. Biomed Pharmacother., vol. 86, pp. 686–693. DOI: 10.1016/j.biopha.2016.12.011.
Franco S.S., De Falco L., Ghaffari S., Brugnara C., Sinclair D.A., Matte' A. et al. (2014). Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. Haematologica, vol. 99, № 2, pp. 267–275. DOI: 10.3324/haematol.2013.090076.
Nakagawa K., Kiko T., Miyazawa T., Sookwong P., Tsuduki T., Satoh A., Miyazawa T. (2011). Amyloid β-induced erythrocytic damage and its attenuation by carotenoids. FEBS Lett., vol. 585, № 8, pp. 1249–1254. DOI: 10.1016/j.febslet.2011.03.060.
Ohmura C., Watada H., Azuma K., Shimizu T., Kanazawa A., Ikeda F. et. al. (2009). Aldose reductase inhibitor, epalrestat, reduces lipid hydroperoxides in type 2 diabetes. Endocr. J., vol. 56, № 1, pp. 149–156.