Prevention of inflammatory process development during erythrocytes transfusion
PDF (Українська)

Keywords

erythrocytes
hypothermic storage
cryopreservation
transfusion
inflammation
glycerin

How to Cite

Ramazanov, V., Volovelskaya, E., Semenchenko, A., & Bondarenko , V. (2020). Prevention of inflammatory process development during erythrocytes transfusion. Experimental and Clinical Medicine, 88(3), 10-20. https://doi.org/10.35339/ekm.2020.88.03.02

Abstract

A literature review was carried out in order to determine possible methodological procedures necessary to increase the resistance of erythrocytes to the damaging factors of hypothermic storage and cryopreservation, in order to reduce the destruction of cells in the body after transfusion and prevent the development of an inflammatory process. Transfusion of erythrocytes in hemorrhagic shock in patients with trauma or during surgery leads to the development of post-transfusion inflammation. Transfusion of cryopreserved erythrocytes showed a lower inflammatory response compared to the use of erythrocytes stored under hypothermic conditions. Cryopreservation of erythrocytes allows you to preserve some of the structural and biochemical characteristics of cells and avoid the accumulation of metabolic decay products. At the same time, when erythrocytes are frozen in media with glycerol, membrane damage is noted, which is aggravated by deglycerolization of cells. In addition, these injuries undergo further development during transfusion, which leads to intravascular hemolysis, as well as to extravascular destruction of erythrocytes in the liver and spleen. This causes an increase in the level of unbound iron in the blood circulation, stimulation of oxidative stress and inflammation, cell damage and dysfunction of internal organs. The presented literature data indicate the need to stimulate the antioxidant potential of erythrocytes during hypothermic storage or freezing. This stimulation may lead to an increase in the resistance of erythrocytes to damaging factors of freezing-thawing and limiting damage to cell membranes. This will ensure a decrease in the degree of destruction of red blood cells in the body after transfusion and slow the development of oxidative stress and inflammation.

Keywords: erythrocytes, hypothermic storage, cryopreservation, transfusion, inflammation, glycerin.

https://doi.org/10.35339/ekm.2020.88.03.02
PDF (Українська)

References

Garcia-Roa M., Del Carmen Vicente-Ayuso M., Bobes A.M. et al. (2017). Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus, 15 (3), pp. 222-231. DOI: 10.2450/2017.0345-16.

Liu C., Grossman B.J. (2015). Red blood cell transfusion for hematologic disorders. Hematology Am SocHematolEducProgram, vol. 2015, issue l, pp. 454-461. DOI: 10.1182/asheducation-2015.1.454.

Sharma S., Sharma P, Tyler L.N. (2011). Transfusion of blood and blood products: indications and complications. Am Earn Physician, 83 (6), pp. 719-724.

Chang A., Kim Y., Hoehn R., Jemigan P, Pritts T. (2017). Cryopreserved packed red blood cells in surgical patients: past, present, and future. Blood Transfus, 15(4), pp. 341-347. DOI: 10.2450/ 2016.0083-16.

Hampton D.A., Wiles C., Fabricant L. J. et al. (2014). Cryopreserved red blood cells are superior to standard liquid red blood cells. J Trauma Acute Care Surg, 77 (1), pp. 20-27. DOI: 10.1097/TA.0000000000000268.

Yoshida T., Prudent M., D'alessandro A. (2019). Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus, 17 (1), pp. 27-52. DOI: 10.2450/2019.0217-18.

Bogner V, Keil L., Kanz K.G. et al. (2009). Very early posttraumatic serum alterations are significantly associated to initial massive RBC substitution, injury severity, multiple organ failure and adverse clinical outcome in multiple injured patients. Eur J Med Res, 14 (7), pp. 284-291.

Valeri C.R., Ragno G. (2010). An approach to prevent the severe adverse events associated with transfusion of FDA-approved blood products. Transfus Apher Sci, 42(3), pp. 223-233. DOI: 10.1016/j.transci.2009.08.001.

Spitalnik S.L. (2014). Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfusion, 54 (10), pp. 2365-2371. DOI: 10.1111/trf.12848.

Dreyfus F. (2008). The deleterious effects of iron overload in patients with myelodysplastic syndromes. Blood Rev, vol. 22, suppl. 2, pp. S29-S34. DOI: 10.1016/S0268-960X(08)70006-7.

Hod Е.А. Zhang N., Sokol S.A. et al. (2010). Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood, 115(21), pp. 4284-4292. DOI: 10.1182/blood-2009-10-245001.

Thuret I. (2013). Post-transfusional iron overload in the haemoglobinopathies. Comptes Rendus Biologies, vol. 336, issue 3, pp. 164-172. DOI: 10.1016/j.crvi.2012.09.010. PMID: 23643400.

Grimshaw K., Sahler J., Spinelli S.L. (2011). New frontiers in transfusion biology: identification and significance of mediators of morbidity and mortality in stored red blood cells. Transfusion, 51(4), pp. 874-880. DOI: 10.1111/j.1537-2995.2011.03095.x.

Remy K.E., Hall M.W., Cholette J. et al. (2018). Pediatric Critical Care Blood Research Network (Blood Net). Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion, 58(3), pp. 804-815. DOI: 10.1111/trf.14488.

Balaji S.N., Trivedi V. (2012). Extracellular Methemoglobin Mediated Early ROS Spike Triggers Osmotic Fragility and RBC Destruction: An Insight into the Enhanced Hemolysis During Malaria. Indian JClin Biochem, vol. 27 (2), pp. 178-185. DOI: 10.1007/s12291-011-0176-5.

Lei C., Xiong L.Z. (2015). Perioperative Red Blood Cell Transfusion: What We Do Not Know. Chin Med J (Engl), 128(17), pp. 2383-2386. DOI: 10.4103/0366-6999.163384. PMID: 26315088.

Schreiber M.A., McCully B.H., Holcomb J.B. et al. (2015). Transfusion of cryopreserved packed red blood cells is safe and effective after trauma: a prospective randomized trial. Ann Surg, vol. 262 (3), pp. 426-433.

Valeri C.R., Ragno G., Pivacek L., O'Neill E.M. (2001). In vivo survival of apheresis RBCs, frozen with 40-percent (wt/vol) glycerol, deglycerolized in the ACP 215, and stored at 4 degrees C in AS-3 for up to 21 days. Transfusion, 41 (7), pp. 928-932.

Hult A., Malm C., Oldenborg P. (2012). Transfusion of cryopreserved human red blood cells into healthy humans is associated with rapid extravascular hemolysis without a proinflammatory cytokine response. Transfusion, vol. 53, pp. 28-33.

McCully B.H., Underwood S.J., Kiraly L. et al. (2018). The effects of cryopreserved red blood cell transfusion on tissue oxygenation in obese trauma patients. J Trauma Acute Care Surg, 84 (1), pp. 104-111. DOI: 10.1097/TA.0000000000001717.

D'Alessandro A., Kriebardis A.G., Rinalducci S. et al. (2015). An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion, 55(1), pp. 205-219. DOI: 10.1111/trf.12804.

Hess J.R. (2014). Measures of stored red blood cell quality. Vox Sang, vol. 107, pp. 1-9.

Holovati J.L., Wong K.A., Webster J.M., Acker J.P (2008). The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine extemalization, and CD47 expression. Transfusion, vol. 48. pp. 1658-1668.

Zemlyanskych N.G. (2020). Regulatcya asimmetrichnogo raspredylenia lipidov v membrane eritrocytov cheloveka v prisutstvii glitcerina і polietilenglikola [Regulation of asymmetric distribution of lipids in the human erythrocyte membrane in the presence of glycerol and polyethylene glycol]. Cytologya - Cytology, 62 (2), pp. 1-9 [in russian].

Whillier S., Raftos J.E., Sparrow R.L., Kuchel P.W. (2011). The effects of long-term storage of human red blood cells on the glutathione synthesis rate and steady-state concentration. Transfusion (Paris), 51(7), pp. 1450-1459.

Wendelbo O., Hervig T., Haugen O. et al. (2017). Microcirculation and red cell transfusion in patients with sepsis. Transfus Apher Sci, 56(6), pp. 900-905. DOI: 10.1016/j.transci.2017.11.020.

Dumaswala U.J., Zhuo L., Mahajan S. et al. (2001). Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs. Am J Physiol Cell Physiol, 280(4), pp. C867-C873. DOI: 10.1152/ajpcell.2001.280.4.C867. PMID: 11245604.

Greenwalt T.J. (1997). Recent developments in the long-term preservation of red blood cells. Curr Opin Hematol, 4(6), pp. 431-435. DOI: 10.1097/00062752-199704060-00013.

Lelkens C.C., Lagerberg J.W.M., de Korte D. (2017). The effect of prefreeze rejuvenation on postthaw storage of red blood cells in AS-3 and SAGM. Transfusion, 57(6), pp. 1448-1458. DOI: 10.1111/trf.14093.

Makashova O.E., Babiychuk L.O., Zubova O.L., Zubov P.M. (2016). Optimizatcya metodu kriokonservuvannya yadrosoderzachich kletok kordovoy krovi ludyny z vykorystannyam kombinatcii krioprotektora DMSO ta antyoksydantu N-acetil-L-systeinu [Optimization of the method of cryopreservation of nuclear-containing cells of human cord blood using a combination of cryoprotectant DMSO and antioxidant N-acetyl-L-cysteine]. Problemy kriobiologiy і kriomeditcyny - Problems of cryobiology and cryomedicine, 26(4), pp. 295-307 [in Ukrainian].

Fry L.J, Querol S., Gomez S.G. et al. (2015). Assessing the toxic effects of DMSO on cord blood to determine exposure time limits and the optimum concentration for cryopreservation. Vox Sang, 109(2), pp. 181-190. DOI: 10.1111/vox.12267.

ZemlyanskychN.G., BabiychukL.A. (2019). Obrazovaniye aktivnykhformkislorodav eritrotsitakh cheloveka pri kriokonservirovanii s glitserolom і polietilenglikolem [Formation of reactive oxygen species in human erythrocytes during cryopreservation with glycerol and polyethylene glycol]. Biofizika - Biophysics, 64(4), pp. 706-715 [in russian].

Zhu Z., Fan X., Lv Y. et al. (2017). Glutamine protects rabbit spermatozoa against oxidative stress via glutathione synthesis during cryopreservation. Reprod Fertil Dev, 29(11), pp. 2183-2194. DOI: 10.1071/RD17020.

Henkelman S., Noorman F., Badloe J.F., Lagerberg J.W. (2015). Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang, 108(2), pp. 103-112. DOI: 10.1111/vox.12218.

Lelkens C.C., Noorman F., Koning J.G. et al. (2003). Stability after thawing of RBCs frozen with the high- and low-glycerol method. Transfusion, 43(2), pp. 157-164.

De Loecker R., Goossens W., Van Duppen V. (1993). Osmotic effects of dilution on erythrocytes after freezing and thawing in glycerol-containing buffer. Cryobiology, 30 (3), pp. 279-285.

Hanna K., Chehab M., Bible L. et al. (2020). Nationwide analysis of cryopreserved packed red blood cell transfusion in civilian trauma. J Trauma Acute Care Surg, vol. 89, issue 5, pp. 861-866. DOI: 10.1097/TA.0000000000002711. PMID: 3236676238.

Mittag D., Sran A., Chan K.S. et al. (2015). Stored red blood cell susceptibility to in vitro transfusion-associated stress conditions is higher after longer storage and increased by storage in saline- adenine-glucose-mannitol compared to AS-1. Transfusion, 55 (9), pp. 2197-2206. DOI: 10.1111/trf.13138.

Guchok V.M., Vorotilin A.M., Lugovoy V.I., Shrago M.I. (1994). Lechebnaya effektivnost eritrocytov, kriokonservirovannych pod zashitoy preparata «Propandiosacharol» [Therapeutic effectiveness of erythrocytes cryopreserved under the protection of the drug «Propandiosacharol»]. Problemy kriobiologiy - Cryobiology problems, 4, pp. 44-47 [in russian].

Gordienko Ye. A., Panina Yu. Ye, Kovalenko I.F. (1998). Opredelenie koefficyentov pronitsaemosty membran eritrotcytov dlya krioprotektorov [Determination of permeability coefficients of erythrocyte membranes for cryoprotectants]. Biofizychnyi visnuk - Biophysical Bulletin, vol. 422, pp. 59-64 [in russian].

RamazanovV.V., VolovelskayaE.L.,KoptelovV.A., Bondarenko V.A. (2014). Svoystvo eritrotcytov, zamorozennych v srede s polietilenglikolem і 1,2-propandiolom [Property of erythrocytes frozen in a medium with polyethylene glycol and 1,2-propanediol]. Visnykproblem biologiy і meditcyny - Bulletin ofproblems of biology and medicine, 2 (3), pp. 230-236 [in russian].

Ramazanov V.V. (2013). Kriozashitnaya effektivnost kombinirovannoy sredy s nepronikayushim і pronikayushim krioprotektorami pri zamorazivanii eritrocytamych suspenziy razlichnogo obyoma [Cryoprotective efficacy of a combined medium with non-penetrating and penetrating cryoprotectants for freezing erythrocyte suspensions of various volumes]. Problemy kriobiologiy - Cryobiology problems, 23(2), pp. 124-134 [in russian].

Ramazanov V.V., Deyneko T.I., Volovelskaya E.L., Koptelov V.A., Bondorenko V.A. (2012). Svoystva eritrotsitov, zamorozhennykh v kombinirovannoy srede s polietilenglikolem і dimetilsulfoksidom [Properties of erythrocytes frozen in a combined medium with polyethylene glycol and dimethyl sulfoxide]. Biotechnologiya - Biotechnology, 5(2), pp. 106-114 [in russian].

Bizjak D.A., Jungen P, Bloch W., Grau M. (2018). Cryopreservation of red blood cells: Effect on rheologic properties and associated metabolic and nitric oxide related parameters. Cryobiology, vol. 84, pp. 59-68. DOI: 10.1016/j.cryobiol.2018.08.001.

Rogers S.C., Dosier L.B., McMahon T.J. et al. (2018). Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes. PLoS One, 13(12), e0209201. DOI: 10.1371/joumal.pone.0209201.